These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 37990819)
1. High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer. Karamzadeh V; Shen ML; Ravanbakhsh H; Sohrabi-Kashani A; Okhovatian S; Savoji H; Radisic M; Juncker D Adv Healthc Mater; 2024 Apr; 13(9):e2303708. PubMed ID: 37990819 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism. Tran RT; Thevenot P; Gyawali D; Chiao JC; Tang L; Yang J Soft Matter; 2010 Jan; 6(11):2449-2461. PubMed ID: 22162975 [TBL] [Abstract][Full Text] [Related]
3. 3D Printability Assessment of Poly(octamethylene maleate (anhydride) citrate) and Poly(ethylene glycol) Diacrylate Copolymers for Biomedical Applications. Wales DJ; Keshavarz M; Howe C; Yeatman E ACS Appl Polym Mater; 2022 Aug; 4(8):5457-5470. PubMed ID: 35991303 [TBL] [Abstract][Full Text] [Related]
4. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices. Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609 [TBL] [Abstract][Full Text] [Related]
5. 3D printing of photocurable poly(glycerol sebacate) elastomers. Yeh YC; Highley CB; Ouyang L; Burdick JA Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633 [TBL] [Abstract][Full Text] [Related]
6. 3D printing and characterization of a soft and biostable elastomer with high flexibility and strength for biomedical applications. Bachtiar EO; Erol O; Millrod M; Tao R; Gracias DH; Romer LH; Kang SH J Mech Behav Biomed Mater; 2020 Apr; 104():103649. PubMed ID: 32174407 [TBL] [Abstract][Full Text] [Related]
7. Physical Models from Physical Templates Using Biocompatible Liquid Crystal Elastomers as Morphologically Programmable Inks For 3D Printing. Prévôt ME; Ustunel S; Freychet G; Webb CR; Zhernenkov M; Pindak R; Clements RJ; Hegmann E Macromol Biosci; 2023 Mar; 23(3):e2200343. PubMed ID: 36415071 [TBL] [Abstract][Full Text] [Related]
8. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
9. Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Davoodi E; Montazerian H; Khademhosseini A; Toyserkani E Acta Biomater; 2020 Nov; 117():261-272. PubMed ID: 33031967 [TBL] [Abstract][Full Text] [Related]
10. Characterizing light engine uniformity and its influence on liquid crystal display based vat photopolymerization printing. Caplins BW; Higgins CI; Kolibaba TJ; Arp U; Miller CC; Poster DL; Zarobila CJ; Zong Y; Killgore JP Addit Manuf; 2023 Jan; 62():. PubMed ID: 36733692 [TBL] [Abstract][Full Text] [Related]
11. High-precision 3D printing of multi-branch vascular scaffold with plasticized PLCL thermoplastic elastomer. Han Y; Wang H; Guan Y; Li S; Yuan Z; Lu L; Zheng X Biomed Mater; 2024 Apr; 19(3):. PubMed ID: 38636492 [TBL] [Abstract][Full Text] [Related]
12. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
13. 3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function. Gokyer S; Yilgor E; Yilgor I; Berber E; Vrana E; Orhan K; Monsef YA; Guvener O; Zinnuroglu M; Oto C; Yilgor Huri P ACS Biomater Sci Eng; 2021 Nov; 7(11):5189-5205. PubMed ID: 34661388 [TBL] [Abstract][Full Text] [Related]
14. A Molecular Rheology Dynamics Study on 3D Printing of Liquid Crystal Elastomers. Ustunel S; Pandya H; Prévôt ME; Pegorin G; Shiralipour F; Paul R; Clements RJ; Khabaz F; Hegmann E Macromol Rapid Commun; 2024 Jun; 45(11):e2300717. PubMed ID: 38445752 [TBL] [Abstract][Full Text] [Related]
15. 3D Printing a Mechanically-Tunable Acrylate Resin on a Commercial DLP-SLA Printer. Borrello J; Nasser P; Iatridis J; Costa KD Addit Manuf; 2018 Oct; 23():374-380. PubMed ID: 31106119 [TBL] [Abstract][Full Text] [Related]
16. Comparing the accuracy of 3 different liquid crystal display printers for dental model printing. Tsolakis IA; Lyros I; Christopoulou I; Tsolakis AI; Papadopoulos MA Am J Orthod Dentofacial Orthop; 2024 Jul; 166(1):7-14. PubMed ID: 38647515 [TBL] [Abstract][Full Text] [Related]
17. Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. Chen H; Cheng DH; Huang SC; Lin YM J Prosthet Dent; 2021 Nov; 126(5):703-708. PubMed ID: 33041074 [TBL] [Abstract][Full Text] [Related]
19. Dimensional accuracy and surface characteristics of complete-arch cast manufactured by six 3D printers. Sim MY; Park JB; Kim DY; Kim HY; Park JM Heliyon; 2024 May; 10(10):e30996. PubMed ID: 38778963 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction. Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]