BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37991107)

  • 1. 3D Printing Manufacturing of Lithium Batteries: Prospects and Challenges toward Practical Applications.
    Huo S; Sheng L; Su B; Xue W; Wang L; Xu H; He X
    Adv Mater; 2024 Feb; 36(8):e2310396. PubMed ID: 37991107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review.
    Fonseca N; Thummalapalli SV; Jambhulkar S; Ravichandran D; Zhu Y; Patil D; Thippanna V; Ramanathan A; Xu W; Guo S; Ko H; Fagade M; Kannan AM; Nian Q; Asadi A; Miquelard-Garnier G; Dmochowska A; Hassan MK; Al-Ejji M; El-Dessouky HM; Stan F; Song K
    Small; 2023 Dec; 19(50):e2302718. PubMed ID: 37501325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges.
    Sztymela K; Bienia M; Rossignol F; Mailley S; Ziesche S; Varghese J; Cerbelaud M
    Heliyon; 2022 Dec; 8(12):e12623. PubMed ID: 36636225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of hierarchically micro/nanostructured electrodes for high-performance rechargeable batteries.
    Wang R; Zhang Y; Xi W; Zhang J; Gong Y; He B; Wang H; Jin J
    Nanoscale; 2023 Sep; 15(34):13932-13951. PubMed ID: 37581599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances and Future Challenges in Printed Batteries.
    Sousa RE; Costa CM; Lanceros-Méndez S
    ChemSusChem; 2015 Nov; 8(21):3539-55. PubMed ID: 26404647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-based three-dimensional manufacturing technologies for rechargeable batteries.
    Moldovan D; Choi J; Choo Y; Kim WS; Hwa Y
    Nano Converg; 2021 Aug; 8(1):23. PubMed ID: 34370114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Thermoplastic Polyurethane Electrodes for Customizable, Flexible Lithium-Ion Batteries with an Ultra-Long Lifetime.
    Hu X; Chen Y; Xu W; Zhu Y; Kim D; Fan Y; Yu B; Chen Y
    Small; 2023 Aug; 19(34):e2301604. PubMed ID: 37093454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printing Electrolytes for Solid-State Batteries.
    McOwen DW; Xu S; Gong Y; Wen Y; Godbey GL; Gritton JE; Hamann TR; Dai J; Hitz GT; Hu L; Wachsman ED
    Adv Mater; 2018 May; 30(18):e1707132. PubMed ID: 29575234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Ridged FeS
    Cardenas JA; Bullivant JP; Kolesnichenko IV; Roach DJ; Gallegos MA; Coker EN; Lambert TN; Allcorn E; Talin AA; Cook AW; Harrison KL
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45342-45351. PubMed ID: 36191154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage.
    Egorov V; Gulzar U; Zhang Y; Breen S; O'Dwyer C
    Adv Mater; 2020 Jul; 32(29):e2000556. PubMed ID: 32510631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.
    Kim SH; Choi KH; Cho SJ; Choi S; Park S; Lee SY
    Nano Lett; 2015 Aug; 15(8):5168-77. PubMed ID: 26176939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.
    Liu C; Cheng X; Li B; Chen Z; Mi S; Lao C
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28796182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries.
    Cheng M; Jiang Y; Yao W; Yuan Y; Deivanayagam R; Foroozan T; Huang Z; Song B; Rojaee R; Shokuhfar T; Pan Y; Lu J; Shahbazian-Yassar R
    Adv Mater; 2018 Sep; 30(39):e1800615. PubMed ID: 30132998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screen-Printed Nickel-Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods.
    Nazri MA; Lim LM; Samsudin Z; Ali MYT; Mansor I; Suhaimi MI; Meskon SR; Nordin AN
    3D Print Addit Manuf; 2021 Jun; 8(3):176-192. PubMed ID: 36654659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes.
    Wei TS; Ahn BY; Grotto J; Lewis JA
    Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Properties of Laser-Printed Multilayer Anodes for Lithium-Ion Batteries.
    Rist U; Falkowski V; Pfleging W
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing for Solid-State Energy Storage.
    Tian X; Xu B
    Small Methods; 2021 Dec; 5(12):e2100877. PubMed ID: 34928040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A photo-curable gel electrolyte ink for 3D-printable quasi-solid-state lithium-ion batteries.
    Gambe Y; Kobayashi H; Iwase K; Stauss S; Honma I
    Dalton Trans; 2021 Nov; 50(45):16504-16508. PubMed ID: 34755748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach.
    Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.