BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37991116)

  • 41. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
    Alber M; Buganza Tepole A; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    NPJ Digit Med; 2019; 2():115. PubMed ID: 31799423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of pulsatile retinal movements by spectral-domain low-coherence interferometry: influence of age and glaucoma on the pulse wave.
    Dion C; Singh K; Ozaki T; Lesk MR; Costantino S
    PLoS One; 2013; 8(1):e54207. PubMed ID: 23382879
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HeMoLab--Hemodynamics Modelling Laboratory: an application for modelling the human cardiovascular system.
    Larrabide I; Blanco PJ; Urquiza SA; Dari EA; Vénere MJ; de Souza e Silva NA; Feijóo RA
    Comput Biol Med; 2012 Oct; 42(10):993-1004. PubMed ID: 22964397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of an adaptive pulmonary simulator for in vitro analysis of patient populations and patient-specific data.
    King JM; Bergeron CA; Taylor CE
    Comput Methods Programs Biomed; 2018 Jul; 161():93-102. PubMed ID: 29852971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How can machine learning and multiscale modeling benefit ocular drug development?
    Wang N; Zhang Y; Wang W; Ye Z; Chen H; Hu G; Ouyang D
    Adv Drug Deliv Rev; 2023 May; 196():114772. PubMed ID: 36906232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions.
    Gharaie SH; Mosadegh B; Morsi Y
    Cardiovasc Eng Technol; 2018 Mar; 9(1):42-52. PubMed ID: 29322329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data.
    Bianchi D; Marino M; Vairo G
    J Biomech; 2016 Aug; 49(12):2331-40. PubMed ID: 26916511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye.
    Karimi A; Rahmati SM; Grytz RG; Girkin CA; Downs JC
    Acta Biomater; 2021 Oct; 134():357-378. PubMed ID: 34245889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics.
    Lumens J; Delhaas T; Kirn B; Arts T
    Pac Symp Biocomput; 2008; ():378-89. PubMed ID: 18229701
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comprehensive mathematical model for cardiac perfusion.
    Zingaro A; Vergara C; Dede' L; Regazzoni F; Quarteroni A
    Sci Rep; 2023 Aug; 13(1):14220. PubMed ID: 37648701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ocular blood flow as a clinical observation: Value, limitations and data analysis.
    Harris A; Guidoboni G; Siesky B; Mathew S; Verticchio Vercellin AC; Rowe L; Arciero J
    Prog Retin Eye Res; 2020 Jan; ():100841. PubMed ID: 31987983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model.
    Guidoboni G; Harris A; Carichino L; Arieli Y; Siesky BA
    Math Biosci Eng; 2014 Jun; 11(3):523-46. PubMed ID: 24506550
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow.
    Erdemir A; Bennetts C; Davis S; Reddy A; Sibole S
    Interface Focus; 2015 Apr; 5(2):20140081. PubMed ID: 25844153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of the Ocular Response Analyzer as an Instrument for Measurement of Intraocular Pressure and Corneal Biomechanics.
    Elsheikh A; Joda A; Abass A; Garway-Heath D
    Curr Eye Res; 2015; 40(11):1111-9. PubMed ID: 25495865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the cardiac response to hemodynamic changes associated with COVID-19: a computational study.
    Dedè L; Regazzoni F; Vergara C; Zunino P; Guglielmo M; Scrofani R; Fusini L; Cogliati C; Pontone G; Quarteroni A
    Math Biosci Eng; 2021 Apr; 18(4):3364-3383. PubMed ID: 34198390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Patient-Specific Hemodynamics of New Coronary Artery Bypass Configurations.
    Rezaeimoghaddam M; Oguz GN; Ates MS; Bozkaya TA; Piskin S; Samaneh Lashkarinia S; Tenekecioglu E; Karagoz H; Pekkan K
    Cardiovasc Eng Technol; 2020 Dec; 11(6):663-678. PubMed ID: 33051831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation.
    Feiger B; Adebiyi A; Randles A
    Comput Biol Med; 2021 Feb; 129():104155. PubMed ID: 33333365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanics of the posterior eye: a critical role in health and disease.
    Campbell IC; Coudrillier B; Ross Ethier C
    J Biomech Eng; 2014 Feb; 136(2):021005. PubMed ID: 24356942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.