These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37991322)

  • 1. Electro-casting for Superior Gas Separation Membrane Performance and Manufacturing.
    Alkandari SH; Castro-Dominguez B
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56600-56611. PubMed ID: 37991322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric membranes for gas separation: interfacial insights and manufacturing.
    Alkandari SH; Lightfoot J; Castro-Dominguez B
    RSC Adv; 2023 May; 13(21):14198-14209. PubMed ID: 37180016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes.
    Hussain A; Farrukh S; Hussain A; Ayoub M
    Environ Technol; 2019 Mar; 40(7):843-854. PubMed ID: 29161995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic Imidazolium-Urethane-Based Poly(Ionic Liquids) Membranes for Enhanced CO
    Dias G; Rocca L; Ferrari HZ; Bernard FL; Brandão FG; Pereira L; Einloft S
    Membranes (Basel); 2024 Jul; 14(7):. PubMed ID: 39057659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advancements in polyurethane-based membranes for gas separation.
    Arshad N; Batool SR; Razzaq S; Arshad M; Rasheed A; Ashraf M; Nawab Y; Nazeer MA
    Environ Res; 2024 Jul; 252(Pt 3):118953. PubMed ID: 38636643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Top-Down Polyelectrolytes for Membrane-Based Post-Combustion CO
    Nikolaeva D; Luis P
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31941140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ether-
    Martínez-Izquierdo L; Malankowska M; Sánchez-Laínez J; Téllez C; Coronas J
    R Soc Open Sci; 2019 Sep; 6(9):190866. PubMed ID: 31598310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ethylene oxide)-Based Copolymer-IL Composite Membranes for CO
    Vroulias D; Staurianou E; Ioannides T; Deimede V
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH
    Miricioiu MG; Iacob C; Nechifor G; Niculescu VC
    Front Chem; 2019; 7():332. PubMed ID: 31263688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of single-walled carbon nanotubes on polydimethylsiloxane membranes for CO
    Felemban BF; Iqbal SS; Bahadar A; Hossain N; Jabbar A
    Environ Sci Pollut Res Int; 2023 May; 30(25):66800-66811. PubMed ID: 37099113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Efficiency Gas Permeability Membranes from Ethyl Cellulose Grafted with Ionic Liquids.
    Xu J; Jia H; Yang N; Wang Q; Yang G; Zhang M; Xu S; Zang Y; Ma L; Jiang P; Zhou H; Wang H
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31752139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of Ionic Liquids with a New Cellulose Ester Containing Imidazolium Cation for High-Performance CO
    Cheng Y; Zhang X; Yin C; Zhang J; Yu J; Zhang J
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000494. PubMed ID: 33205576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG/PPG-PDMS-Based Cross-Linked Copolymer Membranes Prepared by ROMP and In Situ Membrane Casting for CO
    Hossain I; Kim D; Al Munsur AZ; Roh JM; Park HB; Kim TH
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27286-27299. PubMed ID: 32453943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on recent advances of cellulose acetate membranes for gas separation.
    Bashir Z; Lock SSM; Hira NE; Ilyas SU; Lim LG; Lock ISM; Yiin CL; Darban MA
    RSC Adv; 2024 Jun; 14(27):19560-19580. PubMed ID: 38895522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of highly permselective Mixed Matrix Membranes comprising of polyimide and Ln-MOF for CO
    Bano S; Tariq SR; Anjum T; Najam M; Usman M; Yasin M; Shafi HZ; Khan AL
    Chemosphere; 2022 Nov; 307(Pt 3):136051. PubMed ID: 35977565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges.
    Yavuzturk Gul B; Pekgenc E; Vatanpour V; Koyuncu I
    Carbohydr Polym; 2023 Dec; 321():121296. PubMed ID: 37739529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Carbon Dioxide Separation Performance of Bis(trifluoromethylsulfonyl)imide-based Plastic Crystal Composite Membranes with Fluorinated Polar Polymers.
    Ramos-Saz F; Kang CSM; O'Dell LA; Forsyth M; Pringle JM
    ChemSusChem; 2024 Mar; 17(6):e202301314. PubMed ID: 38018882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.