These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37991476)
1. Effects of Covalent or Noncovalent Binding of Different Polyphenols to Acid-Soluble Collagen on Protein Structure, Functionality, and Digestibility. Wang Y; Zhou J; Tian X; Bai L; Ma C; Chen Y; Li Y; Wang W J Agric Food Chem; 2023 Dec; 71(48):19020-19032. PubMed ID: 37991476 [TBL] [Abstract][Full Text] [Related]
2. Covalent conjugation of Inca peanut albumin and polyphenols with different phenolic hydroxyl numbers through laccase catalysis to improve functional properties. Wu Y; Li Y; Liu H; Li P; Du B; Xie XA; Li L J Sci Food Agric; 2024 May; 104(7):4028-4038. PubMed ID: 38252689 [TBL] [Abstract][Full Text] [Related]
3. Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. Jiang B; Zhong S; Yu H; Chen P; Li B; Li D; Liu C; Feng Z J Agric Food Chem; 2022 Sep; 70(37):11715-11726. PubMed ID: 36095172 [TBL] [Abstract][Full Text] [Related]
4. Polyphenol-Conjugated Bimetallic Au@AgNPs for Improved Wound Healing. Orlowski P; Zmigrodzka M; Tomaszewska E; Ranoszek-Soliwoda K; Pajak B; Slonska A; Cymerys J; Celichowski G; Grobelny J; Krzyzowska M Int J Nanomedicine; 2020; 15():4969-4990. PubMed ID: 32764930 [TBL] [Abstract][Full Text] [Related]
5. Covalent modification of zein with polyphenols: A feasible strategy to improve antioxidant activity and solubility. Xu Y; Wei Z; Xue C; Huang Q J Food Sci; 2022 Jul; 87(7):2965-2979. PubMed ID: 35638335 [TBL] [Abstract][Full Text] [Related]
6. Effects of different dietary polyphenols on conformational changes and functional properties of protein-polyphenol covalent complexes. Liu X; Song Q; Li X; Chen Y; Liu C; Zhu X; Liu J; Granato D; Wang Y; Huang J Food Chem; 2021 Nov; 361():130071. PubMed ID: 34091398 [TBL] [Abstract][Full Text] [Related]
7. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols. Wu X; Lu Y; Xu H; Lin D; He Z; Wu H; Liu L; Wang Z Food Chem; 2018 Aug; 256():427-434. PubMed ID: 29606470 [TBL] [Abstract][Full Text] [Related]
8. The effect of rice protein-polyphenols covalent and non-covalent interactions on the structure, functionality and in vitro digestion properties of rice protein. Shi W; Xie H; Ouyang K; Wang S; Xiong H; Woo MW; Zhao Q Food Chem; 2024 Aug; 450():139241. PubMed ID: 38636382 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion. Zhao T; Huang L; Luo D; Xie Y; Zhang Y; Zhang Y; Jiao W; Su G; Zhao M Food Chem; 2021 Jul; 351():129324. PubMed ID: 33647694 [TBL] [Abstract][Full Text] [Related]
10. The influence mechanism of pH and polyphenol structures on the formation, structure, and digestibility of pea starch-polyphenol complexes via high-pressure homogenization. Luo D; Fan J; Jin M; Zhang X; Wang J; Rao H; Xue W Food Res Int; 2024 Oct; 194():114913. PubMed ID: 39232536 [TBL] [Abstract][Full Text] [Related]
11. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate. Jackson JK; Zhao J; Wong W; Burt HM J Mater Sci Mater Med; 2010 May; 21(5):1435-43. PubMed ID: 20162329 [TBL] [Abstract][Full Text] [Related]
12. Covalent conjugation with (-)-epigallo-catechin 3-gallate and chlorogenic acid changes allergenicity and functional properties of Ara h1 from peanut. He W; Zhang T; Velickovic TC; Li S; Lyu Y; Wang L; Yi J; Liu Z; He Z; Wu X Food Chem; 2020 Nov; 331():127355. PubMed ID: 32593042 [TBL] [Abstract][Full Text] [Related]
13. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein-polyphenol conjugates. Liu F; Wang D; Sun C; McClements DJ; Gao Y Food Chem; 2016 Aug; 205():129-39. PubMed ID: 27006223 [TBL] [Abstract][Full Text] [Related]
14. Impact of non-covalent bound polyphenols on conformational, functional properties and in vitro digestibility of pea protein. Hao L; Sun J; Pei M; Zhang G; Li C; Li C; Ma X; He S; Liu L Food Chem; 2022 Jul; 383():132623. PubMed ID: 35413763 [TBL] [Abstract][Full Text] [Related]
15. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Denev P; Číž M; Kratchanova M; Blazheva D Food Chem; 2019 Jun; 284():108-117. PubMed ID: 30744834 [TBL] [Abstract][Full Text] [Related]
16. Non-covalent binding of chlorogenic acid to myofibrillar protein improved its bio-functionality properties and metabolic fate. Zhou Z; Wang D; Luo D; Zhou Z; Liu W; Zeng W; Dinnyés A; Xiong YL; Sun Q Food Chem; 2024 May; 440():138208. PubMed ID: 38159322 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant activity and HPLC analysis of polyphenol-enriched extracts from industrial apple pomace. Bai X; Zhang H; Ren S J Sci Food Agric; 2013 Aug; 93(10):2502-6. PubMed ID: 23460126 [TBL] [Abstract][Full Text] [Related]
18. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions. Huang Y; Li A; Qiu C; Teng Y; Wang Y Food Funct; 2017 Sep; 8(9):3145-3154. PubMed ID: 28776625 [TBL] [Abstract][Full Text] [Related]
19. Water-soluble complexes formed by natural polyphenols and bovine serum albumin: evidence from gel electrophoresis. Kusuda M; Hatano T; Yoshida T Biosci Biotechnol Biochem; 2006 Jan; 70(1):152-60. PubMed ID: 16428833 [TBL] [Abstract][Full Text] [Related]
20. Conjugation of lesser mealworm (Alphitobius diaperinus) larvae protein with polyphenols for the development of innovative antioxidant emulsifiers. Ballon A; Romero MP; Rodriguez-Saona LE; de Lamo-Castellví S; Güell C; Ferrando M Food Chem; 2024 Feb; 434():137494. PubMed ID: 37742546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]