These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 37991846)

  • 1. Biohybrid neural interfaces: improving the biological integration of neural implants.
    Boulingre M; Portillo-Lara R; Green RA
    Chem Commun (Camb); 2023 Dec; 59(100):14745-14758. PubMed ID: 37991846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive Neuroelectronic Interfaces.
    Adewole DO; Serruya MD; Wolf JA; Cullen DK
    Front Neurosci; 2019; 13():269. PubMed ID: 30983957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making it stick: the role of structural design in implantable technologies.
    Lee W; Leask RL; Moraes C
    Integr Biol (Camb); 2015 Nov; 7(11):1335-8. PubMed ID: 26446511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization.
    Thorson TJ; Gurlin RE; Botvinick EL; Mohraz A
    Acta Biomater; 2019 Aug; 94():173-182. PubMed ID: 31233892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing the biocompatibility of biohybrids.
    Witte F; Bartsch I; Willbold E
    Adv Biochem Eng Biotechnol; 2012; 126():285-96. PubMed ID: 21989489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular Tissue Engineering: Progress, Challenges, and Clinical Promise.
    Song HG; Rumma RT; Ozaki CK; Edelman ER; Chen CS
    Cell Stem Cell; 2018 Mar; 22(3):340-354. PubMed ID: 29499152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifelike Transformative Materials for Biohybrid Implants: Inspired by Nature, Driven by Technology.
    Fernández-Colino A; Kiessling F; Slabu I; De Laporte L; Akhyari P; Nagel SK; Stingl J; Reese S; Jockenhoevel S
    Adv Healthc Mater; 2023 Aug; 12(20):e2300991. PubMed ID: 37290055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress of electroactive interface in neural engineering.
    Shan Y; Cui X; Chen X; Li Z
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Jan; 15(1):e01827. PubMed ID: 35715994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy.
    Raman R; Langer R
    Adv Mater; 2020 Apr; 32(13):e1901969. PubMed ID: 31271257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):435-42. PubMed ID: 17691407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When Bio Meets Technology: Biohybrid Neural Interfaces.
    Rochford AE; Carnicer-Lombarte A; Curto VF; Malliaras GG; Barone DG
    Adv Mater; 2020 Apr; 32(15):e1903182. PubMed ID: 31517403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The foreign body response: at the interface of surgery and bioengineering.
    Major MR; Wong VW; Nelson ER; Longaker MT; Gurtner GC
    Plast Reconstr Surg; 2015 May; 135(5):1489-1498. PubMed ID: 25919260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double network hydrogel for tissue engineering.
    Gu Z; Huang K; Luo Y; Zhang L; Kuang T; Chen Z; Liao G
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2018 Nov; 10(6):e1520. PubMed ID: 29664220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive biomimicry: design of neural interfaces with enhanced biointegration.
    Portillo-Lara R; Goding JA; Green RA
    Curr Opin Biotechnol; 2021 Dec; 72():62-68. PubMed ID: 34715548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate based biomaterials for neural interface applications.
    Dhawan V; Cui XT
    J Mater Chem B; 2022 Jun; 10(25):4714-4740. PubMed ID: 35702979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent Stem Cell-Combining Injectable Materials with Enhanced Stemness and Controlled Differentiation In Vivo.
    Ueda N; Sawada S; Yuasa F; Kato K; Nagahama K
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52618-52633. PubMed ID: 36398375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering strategies for the regeneration of orthopedic interfaces.
    Lu HH; Subramony SD; Boushell MK; Zhang X
    Ann Biomed Eng; 2010 Jun; 38(6):2142-54. PubMed ID: 20422291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress and challenges of implantable neural interfaces based on nature-derived materials.
    Redolfi Riva E; Micera S
    Bioelectron Med; 2021 Apr; 7(1):6. PubMed ID: 33902750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.