These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37991928)

  • 21. Plasmonic Local Electric Field-Enhanced Interface toward High-Efficiency Cu
    Guo Y; Zhu J; Kou D; Zhou W; Zhou Z; Yuan S; Qi Y; Meng Y; Han L; Zheng Z; Wu S
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35653219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Organized Back Surface Field to Improve the Performance of Cu
    Song Y; Yao B; Li Y; Ding Z; Sun H; Zhang Z; Zhang L; Zhao H
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31851-31859. PubMed ID: 31313903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. N-Type Surface Design for p-Type CZTSSe Thin Film to Attain High Efficiency.
    Sun Y; Qiu P; Yu W; Li J; Guo H; Wu L; Luo H; Meng R; Zhang Y; Liu SF
    Adv Mater; 2021 Dec; 33(49):e2104330. PubMed ID: 34623707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced efficiency of Cu
    Zhang B; Han L; Ying S; Li Y; Yao B
    RSC Adv; 2018 May; 8(34):19213-19219. PubMed ID: 35539659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 8% Efficiency Cu
    Jo E; Gang MG; Shim H; Suryawanshi MP; Ghorpade UV; Kim JH
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23118-23124. PubMed ID: 31252467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improvement of Performance of CZTSSe Solar Cells by the Synergistic Effect of Back Contact Modification and Ag Doping.
    Wang C; Wang T; Liu Y; Li M; Ma D; Ding Z; Zhu Y; Sun Y; Sun X; Shi L; Ding N; Li Y; Yao B
    ACS Appl Mater Interfaces; 2024 May; 16(20):26182-26194. PubMed ID: 38736356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the reason for enhanced CZTSSe device performance after Ag heavily doped into absorber surface.
    Wang S; Shen Z; Liu Y; Zhang Y
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38445737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Significantly Improving the Crystal Growth of a Cu
    Shi X; Wang Y; Yu H; Wang G; Huang L; Pan D
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41590-41595. PubMed ID: 32814424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Passivating Grain Boundaries via Graphene Additive for Efficient Kesterite Solar Cells.
    Cao L; Zhou Z; Zhou W; Kou D; Meng Y; Yuan S; Qi Y; Han L; Tian Q; Wu S; Liu SF
    Small; 2024 Mar; 20(9):e2304866. PubMed ID: 37863810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells.
    Duan B; Lou L; Meng F; Zhou J; Wang J; Shi J; Wu H; Luo Y; Li D; Meng Q
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55243-55253. PubMed ID: 34751555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Al
    Kim SY; Hong S; Kim SH; Son DH; Kim YI; Kim S; Heo YW; Kang JK; Kim DH
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32962147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of a High-Quality Cu
    Zhao W; Yu F; Liu SF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):634-639. PubMed ID: 30560655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roughness-Controlled Cu
    Cheon KB; Hwang SK; Seo SW; Park JH; Park MA; Kim JY
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24088-24095. PubMed ID: 31199618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introducing Bi
    Cui G; Yang Y; Bai L; Wang R; Gong Z; Cao Y; Li S; Lv X; Zhu C
    Small; 2024 Nov; 20(47):e2405382. PubMed ID: 39169728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aqueous-Solution-Processed Cu
    Suryawanshi MP; Ghorpade UV; Suryawanshi UP; He M; Kim J; Gang MG; Patil PS; Moholkar AV; Yun JH; Kim JH
    ACS Omega; 2017 Dec; 2(12):9211-9220. PubMed ID: 31457436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route.
    Woo K; Kim Y; Yang W; Kim K; Kim I; Oh Y; Kim JY; Moon J
    Sci Rep; 2013 Oct; 3():3069. PubMed ID: 24166151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 11.88% Efficient Flexible Ag-Free CZTSSe Solar Cell: Spontaneously Tailoring the Alkali Metal Level.
    Xu H; Meng R; Xu X; Liu Y; Sun Y; Zhang Y
    Small; 2024 Dec; 20(51):e2408122. PubMed ID: 39394870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of J(sc) in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface.
    Zhou F; Zeng F; Liu X; Liu F; Song N; Yan C; Pu A; Park J; Sun K; Hao X
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22868-73. PubMed ID: 26418196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppressing interface recombination in CZTSSe solar cells by simple selenization with synchronous interface gradient doping.
    Cui XP; Ma Q; Zhou WH; Kou DX; Zhou ZJ; Meng YN; Qi YF; Yuan SJ; Han LT; Wu SX
    Nanoscale; 2022 Dec; 15(1):185-194. PubMed ID: 36475511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.