These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37992093)
1. A NEW ARTIFICIAL INTELLIGENCE-BASED CLINICAL DECISION SUPPORT SYSTEM FOR DIAGNOSIS OF MAJOR PSYCHIATRIC DISEASES BASED ON VOICE ANALYSIS. Cansel N; Faruk Alcin Ö; Furkan Yılmaz Ö; Ari A; Akan M; Ucuz İ Psychiatr Danub; 2023; 35(4):489-499. PubMed ID: 37992093 [TBL] [Abstract][Full Text] [Related]
2. Objectively Quantifying Pediatric Psychiatric Severity Using Artificial Intelligence, Voice Recognition Technology, and Universal Emotions: Pilot Study for Artificial Intelligence-Enabled Innovation to Address Youth Mental Health Crisis. Caulley D; Alemu Y; Burson S; Cárdenas Bautista E; Abebe Tadesse G; Kottmyer C; Aeschbach L; Cheungvivatpant B; Sezgin E JMIR Res Protoc; 2023 Oct; 12():e51912. PubMed ID: 37870890 [TBL] [Abstract][Full Text] [Related]
3. Time-frequency analysis of speech signal using Chirplet transform for automatic diagnosis of Parkinson's disease. Warule P; Mishra SP; Deb S Biomed Eng Lett; 2023 Nov; 13(4):613-623. PubMed ID: 37872998 [TBL] [Abstract][Full Text] [Related]
4. Automatic Assessment of Aphasic Speech Sensed by Audio Sensors for Classification into Aphasia Severity Levels to Recommend Speech Therapies. Herath HMDPM; Weraniyagoda WASA; Rajapaksha RTM; Wijesekara PADSN; Sudheera KLK; Chong PHJ Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146316 [TBL] [Abstract][Full Text] [Related]
5. Machine learning approach for detecting Covid-19 from speech signal using Mel frequency magnitude coefficient. Nayak SS; Darji AD; Shah PK Signal Image Video Process; 2023 Mar; ():1-8. PubMed ID: 37362229 [TBL] [Abstract][Full Text] [Related]
6. On effective cognitive state classification using novel feature extraction strategies. Hazra S; Pratap AA; Agrawal O; Nandy A Cogn Neurodyn; 2021 Dec; 15(6):1125-1155. PubMed ID: 34790272 [TBL] [Abstract][Full Text] [Related]
7. A wrapper-based approach for feature selection and classification of major depressive disorder-bipolar disorders. Tekin Erguzel T; Tas C; Cebi M Comput Biol Med; 2015 Sep; 64():127-37. PubMed ID: 26164033 [TBL] [Abstract][Full Text] [Related]
8. Detecting schizophrenia, bipolar disorder, psychosis vulnerability and major depressive disorder from 5 minutes of online-collected speech. Olah J; Wong WLE; Chaudhry ARR; Mena O; Tang SX medRxiv; 2024 Sep; ():. PubMed ID: 39281747 [TBL] [Abstract][Full Text] [Related]
9. Deep learning in automatic detection of dysphonia: Comparing acoustic features and developing a generalizable framework. Chen Z; Zhu P; Qiu W; Guo J; Li Y Int J Lang Commun Disord; 2023 Mar; 58(2):279-294. PubMed ID: 36117378 [TBL] [Abstract][Full Text] [Related]
10. Letter to the Editor: CONVERGENCES AND DIVERGENCES IN THE ICD-11 VS. DSM-5 CLASSIFICATION OF MOOD DISORDERS. Cerbo AD Turk Psikiyatri Derg; 2021; 32(4):293-295. PubMed ID: 34964106 [TBL] [Abstract][Full Text] [Related]
11. Emotion Recognition from Chinese Speech for Smart Affective Services Using a Combination of SVM and DBN. Zhu L; Chen L; Zhao D; Zhou J; Zhang W Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28737705 [TBL] [Abstract][Full Text] [Related]
12. Detecting Manic State of Bipolar Disorder Based on Support Vector Machine and Gaussian Mixture Model Using Spontaneous Speech. Pan Z; Gui C; Zhang J; Zhu J; Cui D Psychiatry Investig; 2018 Jul; 15(7):695-700. PubMed ID: 29969852 [TBL] [Abstract][Full Text] [Related]
13. Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatching: An artificial intelligence approach. Chin KC; Hsieh TC; Chiang WC; Chien YC; Sun JT; Lin HY; Hsieh MJ; Yang CW; Chen AY; Ma MH Resuscitation; 2021 Oct; 167():144-150. PubMed ID: 34461203 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the clinical utility of speech analysis and machine learning in schizophrenia: A pilot study. Huang J; Zhao Y; Tian Z; Qu W; Du X; Zhang J; Tan Y; Wang Z; Tan S Comput Biol Med; 2023 Sep; 164():107359. PubMed ID: 37591160 [TBL] [Abstract][Full Text] [Related]
15. Stressed Speech Emotion Recognition Using Teager Energy and Spectral Feature Fusion with Feature Optimization. Bandela SR; Siva Priyanka S; Sunil Kumar K; Vijay Bhaskar Reddy Y; Berhanu AA Comput Intell Neurosci; 2023; 2023():5765760. PubMed ID: 37868755 [TBL] [Abstract][Full Text] [Related]
16. Fusion of WPT and MFCC feature extraction in Parkinson's disease diagnosis. Kuresan H; Samiappan D; Masunda S Technol Health Care; 2019; 27(4):363-372. PubMed ID: 30664511 [TBL] [Abstract][Full Text] [Related]
17. A Hybrid Method for the Diagnosis and Classifying Parkinson's Patients based on Time-frequency Domain Properties and K-nearest Neighbor. Soumaya Z; Taoufiq BD; Benayad N; Achraf B; Ammoumou A J Med Signals Sens; 2020; 10(1):60-66. PubMed ID: 32166079 [TBL] [Abstract][Full Text] [Related]
18. Multi-class classification model for psychiatric disorder discrimination. Emre İE; Erol Ç; Taş C; Tarhan N Int J Med Inform; 2023 Feb; 170():104926. PubMed ID: 36442444 [TBL] [Abstract][Full Text] [Related]
19. Automated recognition of major depressive disorder from cardiovascular and respiratory physiological signals. Zitouni MS; Lih Oh S; Vicnesh J; Khandoker A; Acharya UR Front Psychiatry; 2022; 13():970993. PubMed ID: 36569627 [TBL] [Abstract][Full Text] [Related]
20. Classification of Emotional States Using EEG Signals and Wavelet Packet Transform Features. Kumar H; Ganapathy N; Puthankattil SD; Swaminathan R Stud Health Technol Inform; 2022 May; 294():943-944. PubMed ID: 35612250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]