BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37992211)

  • 1. Layer-by-Layer Polymer Functionalization Improves Nanoparticle Penetration and Glioblastoma Targeting in the Brain.
    Pickering AJ; Lamson NG; Marand MH; Hwang W; Straehla JP; Hammond PT
    ACS Nano; 2023 Dec; 17(23):24154-24169. PubMed ID: 37992211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.
    Kong SM; Costa DF; Jagielska A; Van Vliet KJ; Hammond PT
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model.
    Stephen ZR; Chiarelli PA; Revia RA; Wang K; Kievit F; Dayringer C; Jeon M; Ellenbogen R; Zhang M
    Cancer Res; 2019 Sep; 79(18):4776-4786. PubMed ID: 31331912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Delivery of Functionalized Upconversion Nanoparticles for Externally Triggered Photothermal/Photodynamic Therapies of Brain Glioblastoma.
    Tsai YC; Vijayaraghavan P; Chiang WH; Chen HH; Liu TI; Shen MY; Omoto A; Kamimura M; Soga K; Chiu HC
    Theranostics; 2018; 8(5):1435-1448. PubMed ID: 29507632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors.
    Saucier-Sawyer JK; Seo YE; Gaudin A; Quijano E; Song E; Sawyer AJ; Deng Y; Huttner A; Saltzman WM
    J Control Release; 2016 Jun; 232():103-12. PubMed ID: 27063424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme.
    Han Y; Park JH
    Drug Deliv Transl Res; 2020 Dec; 10(6):1876-1887. PubMed ID: 32367425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment.
    Kang T; Zhu Q; Jiang D; Feng X; Feng J; Jiang T; Yao J; Jing Y; Song Q; Jiang X; Gao X; Chen J
    Biomaterials; 2016 Sep; 101():60-75. PubMed ID: 27267628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma.
    Di Mauro PP; Cascante A; Brugada Vilà P; Gómez-Vallejo V; Llop J; Borrós S
    Int J Pharm; 2018 Dec; 553(1-2):169-185. PubMed ID: 30321641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain.
    Saito R; Krauze MT; Bringas JR; Noble C; McKnight TR; Jackson P; Wendland MF; Mamot C; Drummond DC; Kirpotin DB; Hong K; Berger MS; Park JW; Bankiewicz KS
    Exp Neurol; 2005 Dec; 196(2):381-9. PubMed ID: 16197944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the Design of Blood-Brain Barrier-Penetrating Polymer-Lipid-Hybrid Nanoparticles for Delivering Anticancer Drugs to Glioblastoma.
    Ahmed T; Liu FF; He C; Abbasi AZ; Cai P; Rauth AM; Henderson JT; Wu XY
    Pharm Res; 2021 Nov; 38(11):1897-1914. PubMed ID: 34655006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ethylene glycol)-Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model.
    Kim J; Mondal SK; Tzeng SY; Rui Y; Al-Kharboosh R; Kozielski KK; Bhargav AG; Garcia CA; Quiñones-Hinojosa A; Green JJ
    ACS Biomater Sci Eng; 2020 May; 6(5):2943-2955. PubMed ID: 33463272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.
    Zhao J; Zhang B; Shen S; Chen J; Zhang Q; Jiang X; Pang Z
    J Colloid Interface Sci; 2015 Jul; 450():396-403. PubMed ID: 25863222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convection-enhanced delivery of targeted quantum dot-immunoliposome hybrid nanoparticles to intracranial brain tumor models.
    Weng KC; Hashizume R; Noble CO; Serwer LP; Drummond DC; Kirpotin DB; Kuwabara AM; Chao LX; Chen FF; James CD; Park JW
    Nanomedicine (Lond); 2013 Dec; 8(12):1913-25. PubMed ID: 23631502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic targeting of paclitaxel-loaded poly(lactic-
    Ganipineni LP; Ucakar B; Joudiou N; Bianco J; Danhier P; Zhao M; Bastiancich C; Gallez B; Danhier F; Préat V
    Int J Nanomedicine; 2018; 13():4509-4521. PubMed ID: 30127603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEGylated squalenoyl-gemcitabine nanoparticles for the treatment of glioblastoma.
    Gaudin A; Song E; King AR; Saucier-Sawyer JK; Bindra R; Desmaële D; Couvreur P; Saltzman WM
    Biomaterials; 2016 Oct; 105():136-144. PubMed ID: 27521616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery.
    Mamot C; Nguyen JB; Pourdehnad M; Hadaczek P; Saito R; Bringas JR; Drummond DC; Hong K; Kirpotin DB; McKnight T; Berger MS; Park JW; Bankiewicz KS
    J Neurooncol; 2004 May; 68(1):1-9. PubMed ID: 15174514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Tumor-Penetrating Peptide-Modified Poly(l-γ-glutamylglutamine)-Paclitaxel Nanoparticles Based on Hydrophobic Interaction for the Treatment of Glioblastoma.
    Yu J; Sun L; Zhou J; Gao L; Nan L; Zhao S; Peng T; Han L; Wang J; Lu W; Zhang L; Wang Y; Yan Z; Yu L
    Bioconjug Chem; 2017 Nov; 28(11):2823-2831. PubMed ID: 28968068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts.
    Chen PY; Ozawa T; Drummond DC; Kalra A; Fitzgerald JB; Kirpotin DB; Wei KC; Butowski N; Prados MD; Berger MS; Forsayeth JR; Bankiewicz K; James CD
    Neuro Oncol; 2013 Feb; 15(2):189-97. PubMed ID: 23262509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix Metalloproteinase- and pH-Sensitive Nanoparticle System Enhances Drug Retention and Penetration in Glioblastoma.
    Dosta P; Dion MZ; Prado M; Hurtado P; Riojas-Javelly CJ; Cryer AM; Soria Y; Andrews Interiano N; Muñoz-Taboada G; Artzi N
    ACS Nano; 2024 Jun; 18(22):14145-14160. PubMed ID: 38761153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convection-enhanced delivery of SN-38-loaded polymeric micelles (NK012) enables consistent distribution of SN-38 and is effective against rodent intracranial brain tumor models.
    Zhang R; Saito R; Mano Y; Sumiyoshi A; Kanamori M; Sonoda Y; Kawashima R; Tominaga T
    Drug Deliv; 2016 Oct; 23(8):2780-2786. PubMed ID: 26330269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.