These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37992553)

  • 1. Impact of vitamin B
    Zeng Z; Wijnands LM; Boeren S; Smid EJ; Notebaart RA; Abee T
    Int J Food Microbiol; 2024 Jan; 410():110486. PubMed ID: 37992553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic Growth of
    Zeng Z; Li S; Boeren S; Smid EJ; Notebaart RA; Abee T
    mSphere; 2021 Aug; 6(4):e0043421. PubMed ID: 34287006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic Growth of
    Zeng Z; Smid EJ; Boeren S; Notebaart RA; Abee T
    Front Microbiol; 2019; 10():2660. PubMed ID: 31803170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PrfA-like transcription factor gene lmo0753 contributes to L-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections.
    Salazar JK; Wu Z; McMullen PD; Luo Q; Freitag NE; Tortorello ML; Hu S; Zhang W
    Appl Environ Microbiol; 2013 Sep; 79(18):5584-92. PubMed ID: 23835178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A riboswitch-regulated antisense RNA in Listeria monocytogenes.
    Mellin JR; Tiensuu T; Bécavin C; Gouin E; Johansson J; Cossart P
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13132-7. PubMed ID: 23878253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains.
    Rychli K; Grunert T; Ciolacu L; Zaiser A; Razzazi-Fazeli E; Schmitz-Esser S; Ehling-Schulz M; Wagner M
    Int J Food Microbiol; 2016 Feb; 218():17-26. PubMed ID: 26594790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Microcompartments Coupled with Extracellular Electron Transfer Drive the Anaerobic Utilization of Ethanolamine in Listeria monocytogenes.
    Zeng Z; Boeren S; Bhandula V; Light SH; Smid EJ; Notebaart RA; Abee T
    mSystems; 2021 Apr; 6(2):. PubMed ID: 33850044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Listeria monocytogenes in the Chinese food system: strain characterization through partial actA sequencing and tissue-culture pathogenicity assays.
    Zhou X; Jiao X; Wiedmann M
    J Med Microbiol; 2005 Mar; 54(Pt 3):217-224. PubMed ID: 15713604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of a LysR Transcriptional Regulator to Listeria monocytogenes Virulence and Identification of Its Regulons.
    Abdelhamed H; Ramachandran R; Narayanan L; Ozdemir O; Cooper A; Olivier AK; Karsi A; Lawrence ML
    J Bacteriol; 2020 Apr; 202(10):. PubMed ID: 32179628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production.
    Wallace N; Newton E; Abrams E; Zani A; Sun Y
    Arch Microbiol; 2017 Aug; 199(6):827-837. PubMed ID: 28289786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Listeria monocytogenes isolated from food samples from a Romanian black market show distinct virulence profiles.
    Ciolacu L; Nicolau AI; Wagner M; Rychli K
    Int J Food Microbiol; 2015 Sep; 209():44-51. PubMed ID: 25241012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes.
    Anast JM; Schmitz-Esser S
    PLoS One; 2020; 15(7):e0233945. PubMed ID: 32701964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of
    Marini E; Magi G; Ferretti G; Bacchetti T; Giuliani A; Pugnaloni A; Rippo MR; Facinelli B
    Front Cell Infect Microbiol; 2018; 8():293. PubMed ID: 30186775
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Siderakou D; Zilelidou E; Poimenidou S; Paramithiotis S; Mavrogonatou E; Zoumpopoulou G; Tsipra I; Kletsas D; Tsakalidou E; Skandamis PN
    Appl Environ Microbiol; 2022 Jan; 88(2):e0158221. PubMed ID: 34731051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane.
    Carvalho F; Atilano ML; Pombinho R; Covas G; Gallo RL; Filipe SR; Sousa S; Cabanes D
    PLoS Pathog; 2015 May; 11(5):e1004919. PubMed ID: 26001194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization of
    Dank A; Zeng Z; Boeren S; Notebaart RA; Smid EJ; Abee T
    Front Microbiol; 2021; 12():679827. PubMed ID: 34054787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains.
    Oliver HF; Orsi RH; Wiedmann M; Boor KJ
    Appl Environ Microbiol; 2010 Jul; 76(13):4216-32. PubMed ID: 20453120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes.
    Anaya-Sanchez A; Feng Y; Berude JC; Portnoy DA
    PLoS Pathog; 2021 Aug; 17(8):e1009819. PubMed ID: 34407151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium.
    Ailion M; Bobik TA; Roth JR
    J Bacteriol; 1993 Nov; 175(22):7200-8. PubMed ID: 8226666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of ethanolamine utilization and bacterial microcompartment formation in
    Chatterjee A; Kaval KG; Garsin DA
    Infect Immun; 2024 Jun; 92(6):e0016224. PubMed ID: 38752742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.