These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 37992756)

  • 1. Phages overcome bacterial immunity via diverse anti-defence proteins.
    Yirmiya E; Leavitt A; Lu A; Ragucci AE; Avraham C; Osterman I; Garb J; Antine SP; Mooney SE; Hobbs SJ; Kranzusch PJ; Amitai G; Sorek R
    Nature; 2024 Jan; 625(7994):352-359. PubMed ID: 37992756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of Gabija anti-phage defence and viral immune evasion.
    Antine SP; Johnson AG; Mooney SE; Leavitt A; Mayer ML; Yirmiya E; Amitai G; Sorek R; Kranzusch PJ
    Nature; 2024 Jan; 625(7994):360-365. PubMed ID: 37992757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence.
    Leavitt A; Yirmiya E; Amitai G; Lu A; Garb J; Herbst E; Morehouse BR; Hobbs SJ; Antine SP; Sun ZJ; Kranzusch PJ; Sorek R
    Nature; 2022 Nov; 611(7935):326-331. PubMed ID: 36174646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
    Li Y; Bondy-Denomy J
    Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology and evolution of phages encoding anti-CRISPR proteins.
    Pons BJ; van Houte S; Westra ER; Chevallereau A
    J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
    Bondy-Denomy J; Garcia B; Strum S; Du M; Rollins MF; Hidalgo-Reyes Y; Wiedenheft B; Maxwell KL; Davidson AR
    Nature; 2015 Oct; 526(7571):136-9. PubMed ID: 26416740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DISARM is a widespread bacterial defence system with broad anti-phage activities.
    Ofir G; Melamed S; Sberro H; Mukamel Z; Silverman S; Yaakov G; Doron S; Sorek R
    Nat Microbiol; 2018 Jan; 3(1):90-98. PubMed ID: 29085076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revenge of the phages: defeating bacterial defences.
    Samson JE; Magadán AH; Sabri M; Moineau S
    Nat Rev Microbiol; 2013 Oct; 11(10):675-87. PubMed ID: 23979432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phages, anti-CRISPR proteins, and drug-resistant bacteria: what do we know about this triad?
    Ceballos-Garzon A; Muñoz AB; Plata JD; Sanchez-Quitian ZA; Ramos-Vivas J
    Pathog Dis; 2022 Oct; 80(1):. PubMed ID: 36255384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.
    Millman A; Melamed S; Amitai G; Sorek R
    Nat Microbiol; 2020 Dec; 5(12):1608-1615. PubMed ID: 32839535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance is not futile: bacterial 'innate' and CRISPR-Cas 'adaptive' immune systems.
    Fineran PC
    Microbiology (Reading); 2019 Aug; 165(8):834-841. PubMed ID: 30958259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity.
    Hobbs SJ; Wein T; Lu A; Morehouse BR; Schnabel J; Leavitt A; Yirmiya E; Sorek R; Kranzusch PJ
    Nature; 2022 May; 605(7910):522-526. PubMed ID: 35395152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single phage proteins sequester TIR- and cGAS-generated signaling molecules.
    Li D; Xiao Y; Xiong W; Fedorova I; Wang Y; Liu X; Huiting E; Ren J; Gao Z; Zhao X; Cao X; Zhang Y; Bondy-Denomy J; Feng Y
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of phage determinants that confer sensitivity to bacterial immune systems.
    Stokar-Avihail A; Fedorenko T; Hör J; Garb J; Leavitt A; Millman A; Shulman G; Wojtania N; Melamed S; Amitai G; Sorek R
    Cell; 2023 Apr; 186(9):1863-1876.e16. PubMed ID: 37030292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.
    Modell JW; Jiang W; Marraffini LA
    Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional investigation of GajB protein in Gabija anti-phage defense.
    Oh H; Koo J; An SY; Hong SH; Suh JY; Bae E
    Nucleic Acids Res; 2023 Nov; 51(21):11941-11951. PubMed ID: 37897358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA.
    LeRoux M; Srikant S; Teodoro GIC; Zhang T; Littlehale ML; Doron S; Badiee M; Leung AKL; Sorek R; Laub MT
    Nat Microbiol; 2022 Jul; 7(7):1028-1040. PubMed ID: 35725776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress.
    Malone LM; Hampton HG; Morgan XC; Fineran PC
    Nucleic Acids Res; 2022 Jan; 50(1):160-174. PubMed ID: 34928385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.