BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37993001)

  • 1. Hurdle or thruster: Glucose metabolism of T cells in anti-tumour immunity.
    Zhang S; Zhang X; Yang H; Liang T; Bai X
    Biochim Biophys Acta Rev Cancer; 2024 Jan; 1879(1):189022. PubMed ID: 37993001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor.
    Chen C; Wang Z; Ding Y; Qin Y
    Front Immunol; 2022; 13():1090429. PubMed ID: 36618408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of tumor microenvironment on adoptive T cell transfer activity.
    Martín-Otal C; Navarro F; Casares N; Lasarte-Cía A; Sánchez-Moreno I; Hervás-Stubbs S; Lozano T; Lasarte JJ
    Int Rev Cell Mol Biol; 2022; 370():1-31. PubMed ID: 35798502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimeric Antigen Receptors for the Tumour Microenvironment.
    Habib R; Nagrial A; Micklethwaite K; Gowrishankar K
    Adv Exp Med Biol; 2020; 1263():117-143. PubMed ID: 32588326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy.
    Rangel Rivera GO; Knochelmann HM; Dwyer CJ; Smith AS; Wyatt MM; Rivera-Reyes AM; Thaxton JE; Paulos CM
    Front Immunol; 2021; 12():645242. PubMed ID: 33815400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microenvironment-driven metabolic adaptations guiding CD8
    Park J; Hsueh PC; Li Z; Ho PC
    Immunity; 2023 Jan; 56(1):32-42. PubMed ID: 36630916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming T-cell metabolism to enhance adoptive cell therapies.
    Kates M; Saibil SD
    Int Immunol; 2024 Apr; 36(6):261-278. PubMed ID: 38364321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance.
    Weng CY; Kao CX; Chang TS; Huang YH
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33514004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy.
    Li H; Zhao A; Li M; Shi L; Han Q; Hou Z
    Front Immunol; 2022; 13():1046755. PubMed ID: 36569893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect engagement of dendritic cell function by antibodies developed for cancer therapy.
    Corogeanu D; Diebold SS
    Clin Exp Immunol; 2022 Jul; 209(1):64-71. PubMed ID: 35352109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic barriers to cancer immunotherapy.
    DePeaux K; Delgoffe GM
    Nat Rev Immunol; 2021 Dec; 21(12):785-797. PubMed ID: 33927375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy.
    Shen L; Xiao Y; Tian J; Lu Z
    Cancer Lett; 2022 Mar; 529():139-152. PubMed ID: 35007698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy.
    Guerra L; Bonetti L; Brenner D
    Cell Rep; 2020 Jul; 32(1):107848. PubMed ID: 32640218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reshaping immunometabolism in the tumour microenvironment to improve cancer immunotherapy.
    Chen S; Duan H; Sun G
    Biomed Pharmacother; 2023 Aug; 164():114963. PubMed ID: 37269814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient deprivation and hypoxia alter T cell immune checkpoint expression: potential impact for immunotherapy.
    Davern M; Donlon NE; O'Connell F; Gaughan C; O'Donovan C; McGrath J; Sheppard AD; Hayes C; King R; Temperley H; MacLean M; Bulter C; Bhardwaj A; Moore J; Donohoe C; Ravi N; Conroy MJ; Reynolds JV; Lysaght J
    J Cancer Res Clin Oncol; 2023 Jul; 149(8):5377-5395. PubMed ID: 36445478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment.
    Nachef M; Ali AK; Almutairi SM; Lee SH
    Front Immunol; 2021; 12():624324. PubMed ID: 33953707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes.
    Nanjireddy PM; Olejniczak SH; Buxbaum NP
    Front Immunol; 2023; 14():1121565. PubMed ID: 36999013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting metabolism of breast cancer and its implications in T cell immunotherapy.
    Zou J; Mai C; Lin Z; Zhou J; Lai G
    Front Immunol; 2024; 15():1381970. PubMed ID: 38680483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy.
    Li X; Wenes M; Romero P; Huang SC; Fendt SM; Ho PC
    Nat Rev Clin Oncol; 2019 Jul; 16(7):425-441. PubMed ID: 30914826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.