These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 37993072)
21. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. Yadav A; Sharma V; Tsai ML; Chen CW; Sun PP; Nargotra P; Wang JX; Dong CD Bioresour Technol; 2023 Aug; 381():129145. PubMed ID: 37169207 [TBL] [Abstract][Full Text] [Related]
22. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Riaz S; Rhee KY; Park SJ Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33451137 [TBL] [Abstract][Full Text] [Related]
23. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Mahato RP; Kumar S; Singh P Arch Microbiol; 2023 Apr; 205(5):172. PubMed ID: 37017747 [TBL] [Abstract][Full Text] [Related]
24. Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Sohn YJ; Son J; Jo SY; Park SY; Yoo JI; Baritugo KA; Na JG; Choi JI; Kim HT; Joo JC; Park SJ Bioresour Technol; 2021 Nov; 340():125693. PubMed ID: 34365298 [TBL] [Abstract][Full Text] [Related]
25. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Yoon J; Oh MK Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907 [TBL] [Abstract][Full Text] [Related]
26. [Engineering progress in microbial production of polyhydroxyalkanoates]. Yuan K; Zhou W; Peng C; Tang T; Wang Q; Tang W; An T; Chen B; Liu H; Wu L; Li Y; Tong Y Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):384-394. PubMed ID: 33645142 [TBL] [Abstract][Full Text] [Related]
27. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review. Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732 [TBL] [Abstract][Full Text] [Related]
28. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Możejko-Ciesielska J; Ray S; Sankhyan S Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006109 [TBL] [Abstract][Full Text] [Related]
29. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Azizi N; Eslami R; Goudarzi S; Younesi H; Zarrin H Biomacromolecules; 2024 May; 25(5):2679-2700. PubMed ID: 38656151 [TBL] [Abstract][Full Text] [Related]
30. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity. Manso Cobos I; Ibáñez García MI; de la Peña Moreno F; Sáez Melero LP; Luque-Almagro VM; Castillo Rodríguez F; Roldán Ruiz MD; Prieto Jiménez MA; Moreno Vivián C Microb Cell Fact; 2015 Jun; 14():77. PubMed ID: 26055753 [TBL] [Abstract][Full Text] [Related]
31. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. Zhou W; Bergsma S; Colpa DI; Euverink GW; Krooneman J J Environ Manage; 2023 Sep; 341():118033. PubMed ID: 37156023 [TBL] [Abstract][Full Text] [Related]
33. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544 [TBL] [Abstract][Full Text] [Related]
34. Sustainable applications of polyhydroxyalkanoates in various fields: A critical review. Pandey A; Adama N; Adjallé K; Blais JF Int J Biol Macromol; 2022 Nov; 221():1184-1201. PubMed ID: 36113591 [TBL] [Abstract][Full Text] [Related]
36. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Lhamo P; Behera SK; Mahanty B Biotechnol J; 2021 Sep; 16(9):e2100136. PubMed ID: 34132046 [TBL] [Abstract][Full Text] [Related]
37. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Kumar P; Kim BS Bioresour Technol; 2018 Dec; 269():544-556. PubMed ID: 30201320 [TBL] [Abstract][Full Text] [Related]
38. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. Leong YK; Show PL; Ooi CW; Ling TC; Lan JC J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847 [TBL] [Abstract][Full Text] [Related]
39. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Narayanasamy A; Patel SKS; Singh N; Rohit MV; Lee JK Polymers (Basel); 2024 Aug; 16(15):. PubMed ID: 39125253 [TBL] [Abstract][Full Text] [Related]
40. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Yadav B; Talan A; Tyagi RD; Drogui P Bioresour Technol; 2021 Oct; 337():125419. PubMed ID: 34147774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]