These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37993508)

  • 41. Subjective detection of visual field defects using home TV set.
    Shirato S; Adachi M; Hara T
    Jpn J Ophthalmol; 1991; 35(3):273-81. PubMed ID: 1770667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gaze tracker parameters have little association with visual field metrics of intrasession frontloaded SITA-Faster 24-2 visual field results.
    Phu J; Kalloniatis M
    Ophthalmic Physiol Opt; 2022 Sep; 42(5):973-985. PubMed ID: 35598152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new measure for the assessment of visual awareness in individuals with tunnel vision.
    AlSaqr AM; Dickinson CM
    Clin Exp Optom; 2017 Jan; 100(1):61-68. PubMed ID: 27571766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of specific visual subfields in collisions with oncoming cars during simulated driving in patients with advanced glaucoma.
    Kunimatsu-Sanuki S; Iwase A; Araie M; Aoki Y; Hara T; Fukuchi T; Udagawa S; Ohkubo S; Sugiyama K; Matsumoto C; Nakazawa T; Yamaguchi T; Ono H
    Br J Ophthalmol; 2017 Jul; 101(7):896-901. PubMed ID: 28400370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of eye-tracking in the testing of drivers: A review of research.
    Kapitaniak B; Walczak M; Kosobudzki M; Jóźwiak Z; Bortkiewicz A
    Int J Occup Med Environ Health; 2015; 28(6):941-54. PubMed ID: 26294197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects.
    Budenz DL; Rhee P; Feuer WJ; McSoley J; Johnson CA; Anderson DR
    Ophthalmology; 2002 Jun; 109(6):1052-8. PubMed ID: 12045043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compass fundus automated perimetry.
    Fogagnolo P; Digiuni M; Montesano G; Rui C; Morales M; Rossetti L
    Eur J Ophthalmol; 2018 Sep; 28(5):481-490. PubMed ID: 29564933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hemianopic and quadrantanopic field loss, eye and head movements, and driving.
    Wood JM; McGwin G; Elgin J; Vaphiades MS; Braswell RA; DeCarlo DK; Kline LB; Owsley C
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1220-5. PubMed ID: 21367969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The role of CARA for assessment of visual problems].
    Baten G
    Bull Soc Belge Ophtalmol; 2004; (291):17-20. PubMed ID: 15077467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Visual attention outperforms visual-perceptual parameters required by law as an indicator of on-road driving performance.
    Grundler W; Strasburger H
    PLoS One; 2020; 15(8):e0236147. PubMed ID: 32797082
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of methods for the assessment of attention while driving.
    Kircher K; Ahlstrom C
    Accid Anal Prev; 2018 May; 114():40-47. PubMed ID: 28341312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma.
    Artes PH; Hutchison DM; Nicolela MT; LeBlanc RP; Chauhan BC
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2451-7. PubMed ID: 15980235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Driving simulation as a performance-based test of visual impairment in glaucoma.
    Medeiros FA; Weinreb RN; R Boer E; Rosen PN
    J Glaucoma; 2012; 21(4):221-7. PubMed ID: 21467952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microsaccades: Empirical Research and Methodological Advances - Introduction to Part 1 of the Thematic Special Issue.
    Martinez-Conde S; Engbert R; Groner R
    J Eye Mov Res; 2020 Jun; 12(6):. PubMed ID: 33828747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vision Impairment and On-Road Driving.
    Wood JM
    Annu Rev Vis Sci; 2022 Sep; 8():195-216. PubMed ID: 36108105
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation between blue-on-yellow perimetry and scanning laser polarimetry with variable corneal compensation measurements in primary open-angle glaucoma.
    Zhong Y; Chen L; Cheng Y; Huang P
    Jpn J Ophthalmol; 2009 Nov; 53(6):574-579. PubMed ID: 20020234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual field defects and the risk of motor vehicle collisions among patients with glaucoma.
    McGwin G; Xie A; Mays A; Joiner W; DeCarlo DK; Hall TA; Owsley C
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4437-41. PubMed ID: 16303931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An objective evaluation of gaze tracking in Humphrey perimetry and the relation with the reproducibility of visual fields: a pilot study in glaucoma.
    Ishiyama Y; Murata H; Mayama C; Asaoka R
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8149-52. PubMed ID: 25389198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A study on the natural history of scanning behaviour in patients with visual field defects after stroke.
    Loetscher T; Chen C; Wignall S; Bulling A; Hoppe S; Churches O; Thomas NA; Nicholls ME; Lee A
    BMC Neurol; 2015 Apr; 15():64. PubMed ID: 25907452
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Eye Movement Perimetry and Frequency Doubling Perimetry: clinical performance and patient preference during glaucoma screening.
    Meethal NSK; Pel JJM; Mazumdar D; Asokan R; Panday M; van der Steen J; George R
    Graefes Arch Clin Exp Ophthalmol; 2019 Jun; 257(6):1277-1287. PubMed ID: 30944987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.