These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37993713)

  • 21. How much do direct livestock emissions actually contribute to global warming?
    Reisinger A; Clark H
    Glob Chang Biol; 2018 Apr; 24(4):1749-1761. PubMed ID: 29105912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target.
    Tong D; Zhang Q; Zheng Y; Caldeira K; Shearer C; Hong C; Qin Y; Davis SJ
    Nature; 2019 Aug; 572(7769):373-377. PubMed ID: 31261374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anthropogenic and biogenic CO
    Sargent M; Barrera Y; Nehrkorn T; Hutyra LR; Gately CK; Jones T; McKain K; Sweeney C; Hegarty J; Hardiman B; Wang JA; Wofsy SC
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7491-7496. PubMed ID: 29967154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA.
    Graves RA; Haugo RD; Holz A; Nielsen-Pincus M; Jones A; Kellogg B; Macdonald C; Popper K; Schindel M
    PLoS One; 2020; 15(4):e0230424. PubMed ID: 32275725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A study on GHG emission assessment in agricultural areas in Sri Lanka: the case of Mahaweli H agricultural region.
    Rathnayake H; Mizunoya T
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):88180-88196. PubMed ID: 37436627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Achieving net-zero emissions targets: An analysis of long-term scenarios using an integrated assessment model.
    Dafnomilis I; den Elzen M; van Vuuren DP
    Ann N Y Acad Sci; 2023 Apr; 1522(1):98-108. PubMed ID: 36841927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Put more carbon in soils to meet Paris climate pledges.
    Rumpel C; Amiraslani F; Koutika LS; Smith P; Whitehead D; Wollenberg E
    Nature; 2018 Dec; 564(7734):32-34. PubMed ID: 30510229
    [No Abstract]   [Full Text] [Related]  

  • 28. Greenhouse Gas Inventory Model for Biochar Additions to Soil.
    Woolf D; Lehmann J; Ogle S; Kishimoto-Mo AW; McConkey B; Baldock J
    Environ Sci Technol; 2021 Nov; 55(21):14795-14805. PubMed ID: 34637286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finding pathways to national-scale land-sector sustainability.
    Gao L; Bryan BA
    Nature; 2017 Apr; 544(7649):217-222. PubMed ID: 28406202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warming caused by cumulative carbon emissions towards the trillionth tonne.
    Allen MR; Frame DJ; Huntingford C; Jones CD; Lowe JA; Meinshausen M; Meinshausen N
    Nature; 2009 Apr; 458(7242):1163-6. PubMed ID: 19407800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nature-based solutions are critical for putting Brazil on track towards net-zero emissions by 2050.
    Soterroni AC; Império M; Scarabello MC; Seddon N; Obersteiner M; Rochedo PRR; Schaeffer R; Andrade PR; Ramos FM; Azevedo TR; Ometto JPHB; Havlík P; Alencar AAC
    Glob Chang Biol; 2023 Dec; 29(24):7085-7101. PubMed ID: 37907071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The costs of climate inaction.
    Nature; 2018 Sep; 561(7724):433. PubMed ID: 30254361
    [No Abstract]   [Full Text] [Related]  

  • 33. Greenhouse gas emissions from extractive industries in a globalized era.
    Zheng X; Lu Y; Ma C; Yuan J; Stenseth NC; Hessen DO; Tian H; Chen D; Chen Y; Zhang S
    J Environ Manage; 2023 Oct; 343():118172. PubMed ID: 37245306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.
    Krause A; Pugh TAM; Bayer AD; Li W; Leung F; Bondeau A; Doelman JC; Humpenöder F; Anthoni P; Bodirsky BL; Ciais P; Müller C; Murray-Tortarolo G; Olin S; Popp A; Sitch S; Stehfest E; Arneth A
    Glob Chang Biol; 2018 Jul; 24(7):3025-3038. PubMed ID: 29569788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Setting cumulative emissions targets to reduce the risk of dangerous climate change.
    Zickfeld K; Eby M; Matthews HD; Weaver AJ
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16129-34. PubMed ID: 19706489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sources and sinks of greenhouse gases in the landscape: Approach for spatially explicit estimates.
    Holmberg M; Akujärvi A; Anttila S; Autio I; Haakana M; Junttila V; Karvosenoja N; Kortelainen P; Mäkelä A; Minkkinen K; Minunno F; Rankinen K; Ojanen P; Paunu VV; Peltoniemi M; Rasilo T; Sallantaus T; Savolahti M; Tuominen S; Tuominen S; Vanhala P; Forsius M
    Sci Total Environ; 2021 Aug; 781():146668. PubMed ID: 33794457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate policy to defeat the green paradox.
    Fölster S; Nyström J
    Ambio; 2010 May; 39(3):223-35. PubMed ID: 20701179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How production-based and consumption-based emissions accounting systems change climate policy analysis: the case of CO
    Karakaya E; Yılmaz B; Alataş S
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16682-16694. PubMed ID: 30989611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The many possible climates from the Paris Agreement's aim of 1.5 °C warming.
    Seneviratne SI; Rogelj J; Séférian R; Wartenburger R; Allen MR; Cain M; Millar RJ; Ebi KL; Ellis N; Hoegh-Guldberg O; Payne AJ; Schleussner CF; Tschakert P; Warren RF
    Nature; 2018 Jun; 558(7708):41-49. PubMed ID: 29875489
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opportunities to tackle short-lived climate pollutants and other greenhouse gases for China.
    Lin J; Khanna N; Liu X; Wang W; Gordon J; Dai F
    Sci Total Environ; 2022 Oct; 842():156842. PubMed ID: 35738378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.