BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 37993777)

  • 1. A novel efficient drug repurposing framework through drug-disease association data integration using convolutional neural networks.
    Amiri R; Razmara J; Parvizpour S; Izadkhah H
    BMC Bioinformatics; 2023 Nov; 24(1):442. PubMed ID: 37993777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HNet-DNN: Inferring New Drug-Disease Associations with Deep Neural Network Based on Heterogeneous Network Features.
    Liu H; Zhang W; Song Y; Deng L; Zhou S
    J Chem Inf Model; 2020 Apr; 60(4):2367-2376. PubMed ID: 32118415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.
    Aliper A; Plis S; Artemov A; Ulloa A; Mamoshina P; Zhavoronkov A
    Mol Pharm; 2016 Jul; 13(7):2524-30. PubMed ID: 27200455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-disease associations via sigmoid kernel-based convolutional neural networks.
    Jiang HJ; You ZH; Huang YA
    J Transl Med; 2019 Nov; 17(1):382. PubMed ID: 31747915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adera2.0: A Drug Repurposing Workflow for Neuroimmunological Investigations Using Neural Networks.
    Lazarczyk M; Duda K; Mickael ME; Ak O; Paszkiewicz J; Kowalczyk A; HorbaƄczuk JO; Sacharczuk M
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction.
    Wang S; Song X; Zhang Y; Zhang K; Liu Y; Ren C; Pang S
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network.
    Cui C; Ding X; Wang D; Chen L; Xiao F; Xu T; Zheng M; Luo X; Jiang H; Chen K
    Bioinformatics; 2021 Sep; 37(18):2930-2937. PubMed ID: 33739367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network.
    Liu J; Peng D; Li J; Dai Z; Zou X; Li Z
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.
    Liu L; Zhang Q; Wei Y; Zhao Q; Liao B
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A weighted bilinear neural collaborative filtering approach for drug repositioning.
    Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation.
    Yasir M; Park J; Han ET; Park WS; Han JH; Chun W
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.