These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37994272)

  • 1. Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents.
    Agarwal DS; Beteck RM; Ilbeigi K; Caljon G; Legoabe LJ
    Chem Biol Drug Des; 2024 Jan; 103(1):e14400. PubMed ID: 37994272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA; López AG; Pérez Y; Cos P; Froeyen M
    Parasitol Res; 2019 May; 118(5):1533-1548. PubMed ID: 30903349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel quinoline derivatives with broad-spectrum antiprotozoal activities.
    Hartman CB; Dube PS; Legoabe LJ; Van Pelt N; Matheeussen A; Caljon G; Beteck RM
    Arch Pharm (Weinheim); 2024 Jun; 357(6):e2300319. PubMed ID: 38396284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-Methyl-7-deazapurine nucleoside analogues as broad-spectrum antikinetoplastid agents.
    Lin C; Hulpia F; Karalic I; De Schepper L; Maes L; Caljon G; Van Calenbergh S
    Int J Parasitol Drugs Drug Resist; 2021 Dec; 17():57-66. PubMed ID: 34375904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrazinated geraniol derivatives as potential broad-spectrum antiprotozoal agents.
    Jooste J; Legoabe LJ; Ilbeigi K; Caljon G; Beteck RM
    Arch Pharm (Weinheim); 2024 Oct; 357(10):e2400430. PubMed ID: 38982314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and antitrypanosomal activities of novel pyridylchalcones.
    Bhambra AS; Ruparelia KC; Tan HL; Tasdemir D; Burrell-Saward H; Yardley V; Beresford KJM; Arroo RRJ
    Eur J Med Chem; 2017 Mar; 128():213-218. PubMed ID: 28189085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Aroyl quinazolinone: Synthesis and in vitro anti-parasitic activity.
    Setshedi KJ; Beteck RM; Jesumoroti OJ; Ilbeigi K; Mabille D; Caljon G; Van der Kooy F; Legoabe LJ
    Chem Biol Drug Des; 2023 Oct; 102(4):763-772. PubMed ID: 37353860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds.
    Braga SFP; Santos VC; Vieira RP; Silva EBD; Monti L; Krake SH; Martinez PDG; Dias LC; Caffrey CR; Siqueira-Neto JL; de Oliveira RB; Ferreira RS
    Eur J Med Chem; 2022 Dec; 244():114876. PubMed ID: 36343429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and in vitro antikinetoplastid activity of polyamine-hydroxybenzotriazole conjugates.
    Jagu E; Pomel S; Diez-Martinez A; Ramiandrasoa F; Krauth-Siegel RL; Pethe S; Blonski C; Labruère R; Loiseau PM
    Bioorg Med Chem; 2017 Jan; 25(1):84-90. PubMed ID: 27793448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the dipeptidyl carboxypeptidase inhibitor captopril as a source of pan anti-trypanosomatid agents.
    Garsi JB; Hocine S; Hensienne R; Moitessier M; Denton H; Major LL; Smith TK; Hanessian S
    Bioorg Med Chem Lett; 2024 Sep; 110():129883. PubMed ID: 39013490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity.
    Di Pietro O; Vicente-García E; Taylor MC; Berenguer D; Viayna E; Lanzoni A; Sola I; Sayago H; Riera C; Fisa R; Clos MV; Pérez B; Kelly JM; Lavilla R; Muñoz-Torrero D
    Eur J Med Chem; 2015 Nov; 105():120-37. PubMed ID: 26479031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and evaluation of a collection of purine-like C-nucleosides as antikinetoplastid agents.
    Bouton J; Maes L; Karalic I; Caljon G; Van Calenbergh S
    Eur J Med Chem; 2021 Feb; 212():113101. PubMed ID: 33385837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro antiprotozoal activity and cytotoxicity of extracts and fractions from the leaves, root bark and stem bark of Isolona hexaloba.
    Musuyu Muganza D; Fruth BI; Nzunzu Lami J; Cos P; Cimanga Kanyanga R; Maes L; Pieters L
    J Ethnopharmacol; 2015 Nov; 174():187-94. PubMed ID: 26239153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2-(Nitroaryl)-5-Substituted-1,3,4-Thiadiazole Derivatives with Antiprotozoal Activities: In Vitro and In Vivo Study.
    Mousavi A; Foroumadi P; Emamgholipour Z; Mäser P; Kaiser M; Foroumadi A
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and in vitro evaluation of tropane halogenated-derivatives against malaria, sleeping sickness, Chagas disease and leishmaniasis.
    Cretton S; Bartholomeusz TA; Mehl F; Allenbach Y; Matheeussen A; Cos P; Maes L; Christen P
    Med Chem; 2014; 10(8):753-8. PubMed ID: 24813684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases.
    Fersing C; Boudot C; Pedron J; Hutter S; Primas N; Castera-Ducros C; Bourgeade-Delmas S; Sournia-Saquet A; Moreau A; Cohen A; Stigliani JL; Pratviel G; Crozet MD; Wyllie S; Fairlamb A; Valentin A; Rathelot P; Azas N; Courtioux B; Verhaeghe P; Vanelle P
    Eur J Med Chem; 2018 Sep; 157():115-126. PubMed ID: 30092366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi.
    Fersing C; Boudot C; Castera-Ducros C; Pinault E; Hutter S; Paoli-Lombardo R; Primas N; Pedron J; Seguy L; Bourgeade-Delmas S; Sournia-Saquet A; Stigliani JL; Brossas JY; Paris L; Valentin A; Wyllie S; Fairlamb AH; Boutet-Robinet É; Corvaisier S; Since M; Malzert-Fréon A; Destere A; Mazier D; Rathelot P; Courtioux B; Azas N; Verhaeghe P; Vanelle P
    Eur J Med Chem; 2020 Sep; 202():112558. PubMed ID: 32652409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel prenyloxy chalcones as potential leishmanicidal and trypanocidal agents: Design, synthesis and evaluation.
    Espinoza-Hicks JC; Chacón-Vargas KF; Hernández-Rivera JL; Nogueda-Torres B; Tamariz J; Sánchez-Torres LE; Camacho-Dávila A
    Eur J Med Chem; 2019 Apr; 167():402-413. PubMed ID: 30784876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi.
    Belluti F; Uliassi E; Veronesi G; Bergamini C; Kaiser M; Brun R; Viola A; Fato R; Michels PA; Krauth-Siegel RL; Cavalli A; Bolognesi ML
    ChemMedChem; 2014 Feb; 9(2):371-82. PubMed ID: 24403089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical constituents from Waltheria indica exert in vitro activity against Trypanosoma brucei and T. cruzi.
    Cretton S; Bréant L; Pourrez L; Ambuehl C; Perozzo R; Marcourt L; Kaiser M; Cuendet M; Christen P
    Fitoterapia; 2015 Sep; 105():55-60. PubMed ID: 26072041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.