BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37994305)

  • 1. Mixed Nanosphere Assemblies at a Liquid-Liquid Interface.
    Fink Z; Wu X; Kim PY; McGlasson A; Abdelsamie M; Emrick T; Sutter-Fella CM; Ashby PD; Helms BA; Russell TP
    Small; 2024 Apr; 20(15):e2308560. PubMed ID: 37994305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending Surface-Enhanced Raman Spectroscopy to Liquids Using Shell-Isolated Plasmonic Superstructures.
    Wondergem CS; van Swieten TP; Geitenbeek RG; Erné BH; Weckhuysen BM
    Chemistry; 2019 Dec; 25(69):15772-15778. PubMed ID: 31478273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Surface X-ray Studies of Gold Nanoparticle-Phospholipid Films at the Air/Water Interface.
    You SS; Heffern CT; Dai Y; Meron M; Henderson JM; Bu W; Xie W; Lee KY; Lin B
    J Phys Chem B; 2016 Sep; 120(34):9132-41. PubMed ID: 27459364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Function Correlations in Sputter Deposited Gold/Fluorocarbon Multilayers for Tuning Optical Response.
    Pandit P; Schwartzkopf M; Rothkirch A; Roth SV; Bernstorff S; Gupta A
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31484334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convenient phase transfer protocol to functionalize gold nanoparticles with short alkylamine ligands.
    Yang G; Chang WS; Hallinan DT
    J Colloid Interface Sci; 2015 Dec; 460():164-72. PubMed ID: 26319333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System.
    Yang G; Hallinan DT
    Sci Rep; 2016 Oct; 6():35339. PubMed ID: 27762394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of nanoparticle-surfactant assembly and jamming at the water-oil interface.
    Chai Y; Hasnain J; Bahl K; Wong M; Li D; Geissler P; Kim PY; Jiang Y; Gu P; Li S; Lei D; Helms BA; Russell TP; Ashby PD
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33239289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relaxation and Aging of Nanosphere Assemblies at a Water-Oil Interface.
    Kim PY; Fink Z; Zhang Q; Dufresne EM; Narayanan S; Russell TP
    ACS Nano; 2022 Jun; 16(6):8967-8973. PubMed ID: 35666243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating.
    Chaikin Y; Kedem O; Raz J; Vaskevich A; Rubinstein I
    Anal Chem; 2013 Nov; 85(21):10022-7. PubMed ID: 24107238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.
    Costa L; Li-Destri G; Thomson NH; Konovalov O; Pontoni D
    Nano Lett; 2016 Sep; 16(9):5463-8. PubMed ID: 27571473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic surface nanostructuring of Au-dots@SiO
    Yu R; Shibayama T; Ishioka J; Meng X; Lei Y; Watanabe S
    Nanotechnology; 2017 Jul; 28(27):275701. PubMed ID: 28541250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Assembly and Jamming of Nanoparticle Surfactants at Liquid-Liquid Interfaces.
    Wang B; Yin B; Zhang Z; Yin Y; Yang Y; Wang H; Russell TP; Shi S
    Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202114936. PubMed ID: 34964229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Metal-Oxide Nanoparticle-Aqueous Solution Interface Studied by Liquid-Microjet Photoemission.
    Ali H; Winter B; Seidel R
    Acc Chem Res; 2023 Jul; 56(13):1687-1697. PubMed ID: 37310757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy.
    Liu J; Li J; Li F; Zhou Y; Hu X; Xu T; Xu W
    Anal Bioanal Chem; 2018 Aug; 410(21):5277-5285. PubMed ID: 29943263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Au Photodeposition on Large ZnO Nanoparticles.
    Fernando JF; Shortell MP; Noble CJ; Harmer JR; Jaatinen EA; Waclawik ER
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14271-83. PubMed ID: 27196721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning LSPR of Thermal Spike-Induced Shape-Engineered Au Nanoparticles Embedded in Si
    Malik P; Sarker D; Kumar D; Schwartzkopf M; Srivastava P; Ghosh S
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45426-45440. PubMed ID: 37712830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength.
    Chai Y; Lukito A; Jiang Y; Ashby PD; Russell TP
    Nano Lett; 2017 Oct; 17(10):6453-6457. PubMed ID: 28901151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.