BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37994305)

  • 21. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films.
    Chen CM; Huang YJ; Wei KH
    Nanoscale; 2014 Jun; 6(11):5999-6008. PubMed ID: 24777196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined effects of nanoparticle size, and nanoparticle and surfactant concentrations on the evaporative kinetics, dried morphologies, and plasmonic property of gold colloidal dispersion droplets.
    Zaibudeen AW; Bandyopadhyay R
    Nanotechnology; 2023 May; 34(29):. PubMed ID: 37068469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The advantages of nanoparticle surfactants over Janus nanoparticles on structuring liquids.
    Zhu YL; Wang D; Guan JL; Sun ZY; Lu Z
    Nanoscale; 2022 Mar; 14(9):3554-3560. PubMed ID: 35229843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core-shell nanocomposite.
    Thatai S; Khurana P; Prasad S; Kumar D
    Talanta; 2015 Mar; 134():568-575. PubMed ID: 25618709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transition in Dynamics as Nanoparticles Jam at the Liquid/Liquid Interface.
    Cui M; Miesch C; Kosif I; Nie H; Kim PY; Kim H; Emrick T; Russell TP
    Nano Lett; 2017 Nov; 17(11):6855-6862. PubMed ID: 29048914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of gold nanoparticle films on glass by thermal embedding.
    Karakouz T; Maoz BM; Lando G; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):978-87. PubMed ID: 21388167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Selective and Repeatable Surface-Enhanced Resonance Raman Scattering Detection for Epinephrine in Serum Based on Interface Self-Assembled 2D Nanoparticles Arrays.
    Zhou B; Li X; Tang X; Li P; Yang L; Liu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7772-7779. PubMed ID: 28177221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ag and Au Nanoparticles as Color Indicators for Monomer/Micelle-Nanoparticle Interactions.
    Kaur P; Rajput JK; Singh K; Khullar P; Bakshi MS
    Langmuir; 2022 Jun; 38(25):7802-7814. PubMed ID: 35710100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Monitoring of Morphology and Optical Properties during Sputter Deposition for Tailoring Metal-Polymer Interfaces.
    Schwartzkopf M; Santoro G; Brett CJ; Rothkirch A; Polonskyi O; Hinz A; Metwalli E; Yao Y; Strunskus T; Faupel F; Müller-Buschbaum P; Roth SV
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13547-56. PubMed ID: 26030314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The plasmonic properties of gold nanoparticle clusters formed via applying an AC electric field.
    Watanabe K; Tanaka E; Ishii H; Nagao D
    Soft Matter; 2018 May; 14(17):3372-3377. PubMed ID: 29620115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of metal nanoparticle monolayers on amphiphilic poly(amido amine) dendrimer Langmuir films.
    Ujihara M; Mitamura K; Torikai N; Imae T
    Langmuir; 2006 Apr; 22(8):3656-61. PubMed ID: 16584240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conductive gold nanoparticle mirrors at liquid/liquid interfaces.
    Fang PP; Chen S; Deng H; Scanlon MD; Gumy F; Lee HJ; Momotenko D; Amstutz V; Cortés-Salazar F; Pereira CM; Yang Z; Girault HH
    ACS Nano; 2013 Oct; 7(10):9241-8. PubMed ID: 24047434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient quenching sheds light on early stages of gold nanoparticle formation.
    Biegel M; Schikarski T; Cardenas Lopez P; Gromotka L; Lübbert C; Völkl A; Damm C; Walter J; Peukert W
    RSC Adv; 2023 Jun; 13(26):18001-18013. PubMed ID: 37323457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gas Bubbles Stabilized by Janus Particles with Varying Hydrophilic-Hydrophobic Surface Characteristics.
    Fujii S; Yokoyama Y; Nakayama S; Ito M; Yusa SI; Nakamura Y
    Langmuir; 2018 Jan; 34(3):933-942. PubMed ID: 28981288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chiral Plasmons: Au Nanoparticle Assemblies on Thermoresponsive Organic Templates.
    George J; Kar S; Anupriya ES; Somasundaran SM; Das AD; Sissa C; Painelli A; Thomas KG
    ACS Nano; 2019 Apr; 13(4):4392-4401. PubMed ID: 30916934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of SiO
    Song D; Wang T; Zhuang L
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces.
    Smits J; Vieira F; Bisswurn B; Rezwan K; Maas M
    Langmuir; 2019 Aug; 35(34):11089-11098. PubMed ID: 31368712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanoparticle carrier.
    Chu Z; Yin C; Zhang S; Lin G; Li Q
    Nanoscale; 2013 Apr; 5(8):3406-11. PubMed ID: 23471439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Scattering and Near Field of TiO
    Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.