BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37994327)

  • 21. Physicochemical characterizations of starches isolated from Tetrastigma hemsleyanum Diels et Gilg.
    Gong W; Liu T; Zhou Z; Wu D; Shu X; Xiong H
    Int J Biol Macromol; 2021 Jul; 183():1540-1547. PubMed ID: 34019925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of nitrogen level on growth of Tetrastigma hemsleyanum and phytochemical content and antioxidant activity in stems and leaves].
    Fu LZ; Zhao LM; Lyu HQ; Yan MQ; Zheng YQ; Liu Q; Jin L; Cheng JW; Lu TG; Wang LY
    Zhongguo Zhong Yao Za Zhi; 2019 Feb; 44(4):696-702. PubMed ID: 30989881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway.
    Ji W; Zhu H; Xing B; Chu C; Ji T; Ge W; Wang J; Peng X
    J Ethnopharmacol; 2024 Jan; 318(Pt A):116912. PubMed ID: 37451489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kaempferol 3-O-Rutinoside, a Flavone Derived from
    Zheng W; Wang H; Wang X; Li X; Hu J; Zi X; Zhou Y; Pan D; Fu Y
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Phytochemistry, Pharmacology, and Quality Control of
    Zhu R; Xu X; Ying J; Cao G; Wu X
    Front Pharmacol; 2020; 11():550497. PubMed ID: 33101019
    [No Abstract]   [Full Text] [Related]  

  • 26. Molecular cloning and structural analysis of key enzymes in Tetrastigma hemsleyanum for resveratrol biosynthesis.
    Hu W; Xia P; Liang Z
    Int J Biol Macromol; 2021 Nov; 190():19-32. PubMed ID: 34478792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromosome-level reference genome of Tetrastigma hemsleyanum (Vitaceae) provides insights into genomic evolution and the biosynthesis of phenylpropanoids and flavonoids.
    Zhu S; Zhang X; Ren C; Xu X; Comes HP; Jiang W; Fu C; Feng H; Cai L; Hong D; Li K; Kai G; Qiu Y
    Plant J; 2023 May; 114(4):805-823. PubMed ID: 36864731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The complete chloroplast genomes of Tetrastigma hemsleyanum (Vitaceae) from different regions of China: molecular structure, comparative analysis and development of DNA barcodes for its geographical origin discrimination.
    Dong S; Zhou M; Zhu J; Wang Q; Ge Y; Cheng R
    BMC Genomics; 2022 Aug; 23(1):620. PubMed ID: 36028808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fermentation-mediated variations in structure and biological activity of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg.
    Cheng J; Wang Y; Wei H; He L; Hu C; Cheng S; Ji W; Liu Y; Wang S; Huang X; Jiang Y; Han S; Xing Y; Wang B
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127463. PubMed ID: 37852397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital RNA-seq transcriptome plus tissue anatomy analyses reveal the developmental mechanism of the calabash-shaped root in Tetrastigma hemsleyanum.
    Xiang T; Li J; Bao S; Xu Z; Wang L; Long F; He C
    Tree Physiol; 2021 Sep; 41(9):1729-1748. PubMed ID: 33601408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants.
    Mora-Vásquez S; Wells-Abascal GG; Espinosa-Leal C; Cardineau GA; García-Lara S
    Metab Eng Commun; 2022 Jun; 14():e00194. PubMed ID: 35242556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Total flavonoids of Tetrastigma hemsleyanum Diels et Gilg inhibits colorectal tumor growth by modulating gut microbiota and metabolites.
    Han B; Zhai Y; Li X; Zhao H; Sun C; Zeng Y; Zhang W; Lu J; Kai G
    Food Chem; 2023 Jun; 410():135361. PubMed ID: 36610085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioactives and metabolites of Tetrastigma hemsleyanum root extract alleviate DSS-induced ulcerative colitis by targeting the SYK protein in the B cell receptor signaling pathway.
    Feng Z; Ye W; Feng L
    J Ethnopharmacol; 2024 Mar; 322():117563. PubMed ID: 38104876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants.
    Singh D; Thapa S; Mahawar H; Kumar D; Geat N; Singh SK
    Antonie Van Leeuwenhoek; 2022 Jun; 115(6):699-730. PubMed ID: 35460457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zearalenone regulates microRNA156 to affect the root development of Tetrastigma hemsleyanum.
    Li J; Huang X; Zeng Z; Chen Z; Huang J; He C; Xiang T
    Tree Physiol; 2023 Apr; 43(4):643-657. PubMed ID: 36579817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Total flavonoids from the dried root of Tetrastigma hemsleyanum Diels et Gilg inhibit colorectal cancer growth through PI3K/AKT/mTOR signaling pathway.
    Zhai Y; Sun J; Sun C; Zhao H; Li X; Yao J; Su J; Xu X; Xu X; Hu J; Daglia M; Han B; Kai G
    Phytother Res; 2022 Nov; 36(11):4263-4277. PubMed ID: 35831026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revealing quality chemicals of Tetrastigma hemsleyanum roots in different geographical origins using untargeted metabolomics and random-forest based spectrum-effect analysis.
    Chu C; Lv Y; Yao X; Ye H; Li C; Peng X; Gao Z; Mao K
    Food Chem; 2024 Aug; 449():139207. PubMed ID: 38579655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibacterial mechanism of Tetrastigma hemsleyanum Diels et Gilg's polysaccharides by metabolomics based on HPLC/MS.
    Chen X; Tao L; Ru Y; Weng S; Chen Z; Wang J; Guo L; Lin Z; Pan W; Qiu B
    Int J Biol Macromol; 2019 Nov; 140():206-215. PubMed ID: 31415856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization of a cold related flavanone 3-hydroxylase from Tetrastigma hemsleyanum: an in vitro, in silico and in vivo study.
    Wu L; Tian J; Yu Y; Yuan L; Zhang Y; Wu H; Wang F; Peng X
    Biotechnol Lett; 2023 Dec; 45(11-12):1565-1578. PubMed ID: 37910279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants.
    Niazian M; Sabbatini P
    Planta; 2021 Oct; 254(6):111. PubMed ID: 34718882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.