BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37994371)

  • 1. Synthesis of L-cyclic tetrapeptides by backbone amide activation CyClick strategy.
    Wills R; Adebomi V; Spancake C; Cohen RD; Raj M
    Tetrahedron; 2022 Nov; 126():. PubMed ID: 37994371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CyClick Chemistry for the Synthesis of Cyclic Peptides.
    Adebomi V; Cohen RD; Wills R; Chavers HAH; Martin GE; Raj M
    Angew Chem Int Ed Engl; 2019 Dec; 58(52):19073-19080. PubMed ID: 31617285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular Hydrogen Bonding Enables a Zwitterionic Mechanism for Macrocyclic Peptide Formation: Computational Mechanistic Studies of CyClick Chemistry.
    Shao H; Adebomi V; Bruce A; Raj M; Houk KN
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202307210. PubMed ID: 37475575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids.
    Chung BKW; White CJ; Scully CCG; Yudin AK
    Chem Sci; 2016 Nov; 7(11):6662-6668. PubMed ID: 28567256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difficult macrocyclizations: new strategies for synthesizing highly strained cyclic tetrapeptides.
    Meutermans WD; Bourne GT; Golding SW; Horton DA; Campitelli MR; Craik D; Scanlon M; Smythe ML
    Org Lett; 2003 Jul; 5(15):2711-4. PubMed ID: 12868896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of all-L cyclic tetrapeptides using pseudoprolines as removable turn inducers.
    Fairweather KA; Sayyadi N; Luck IJ; Clegg JK; Jolliffe KA
    Org Lett; 2010 Jul; 12(14):3136-9. PubMed ID: 20565133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Selective Peptide Macrocyclization.
    Wills R; Adebomi V; Raj M
    Chembiochem; 2021 Jan; 22(1):52-62. PubMed ID: 32794268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of constrained head-to-tail cyclic tetrapeptides by an imine-induced ring-closing/contraction strategy.
    Wong CT; Lam HY; Song T; Chen G; Li X
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10212-5. PubMed ID: 23934633
    [No Abstract]   [Full Text] [Related]  

  • 9. Cyclic tetrapeptides via the ring contraction strategy: chemical techniques useful for their identification.
    Horton DA; Bourne GT; Coughlan J; Kaiser SM; Jacobs CM; Jones A; Rühmann A; Turner JY; Smythe ML
    Org Biomol Chem; 2008 Apr; 6(8):1386-95. PubMed ID: 18385845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on conformational consequences of i to i + 3 side-chain cyclization in model cyclic tetrapeptides.
    Rao MH; Yang W; Joshua H; Becker JM; Naider F
    Int J Pept Protein Res; 1995 May; 45(5):418-29. PubMed ID: 7591481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function.
    Sarojini V; Cameron AJ; Varnava KG; Denny WA; Sanjayan G
    Chem Rev; 2019 Sep; 119(17):10318-10359. PubMed ID: 31418274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical rules predicting conformation of cyclic tetrapeptides from primary structure.
    Kato T; Lee S; Shimohigashi Y; Tone A; Kodera Y; Izumiya N
    Int J Pept Protein Res; 1987 Jan; 29(1):53-61. PubMed ID: 3570655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of ring size on the copper(II) coordination abilities of cyclic tetrapeptides.
    Brasuń J; Matera-Witkiewicz A; Ołdziej S; Pratesi A; Ginanneschi M; Messori L
    J Inorg Biochem; 2009 May; 103(5):813-7. PubMed ID: 19329186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Exploration of Passive Permeability in Tetrapeptides with Hydrogen-Bond-Accepting Amino Acid Side Chains.
    Shimizu H; Renslo AR
    ChemMedChem; 2022 Aug; 17(16):e202200204. PubMed ID: 35696654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry.
    Augustin AU; Werz DB
    Acc Chem Res; 2021 Mar; 54(6):1528-1541. PubMed ID: 33661599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phage display-mediated discovery of novel tyrosinase-targeting tetrapeptide inhibitors reveals the significance of N-terminal preference of cysteine residues and their functional sulfur atom.
    Lee YC; Hsiao NW; Tseng TS; Chen WC; Lin HH; Leu SJ; Yang EW; Tsai KC
    Mol Pharmacol; 2015 Feb; 87(2):218-30. PubMed ID: 25403678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α
    Chen CC; Wang SF; Su YY; Lin YA; Lin PC
    Chem Asian J; 2017 Jun; 12(12):1326-1337. PubMed ID: 28395122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Energy Landscapes of Cyclic Tetrapeptides with Discrete Path Sampling.
    Oakley MT; Johnston RL
    J Chem Theory Comput; 2013 Jan; 9(1):650-657. PubMed ID: 23596359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of aliphatic cap group in inhibition of histone deacetylases by cyclic tetrapeptides.
    Nishino N; Shivashimpi GM; Soni PB; Bhuiyan MP; Kato T; Maeda S; Nishino TG; Yoshida M
    Bioorg Med Chem; 2008 Jan; 16(1):437-45. PubMed ID: 17900911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.