BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37994376)

  • 1. Coenzyme A Thioester Intermediates as Platform Molecules in Cell-Free Chemical Biomanufacturing.
    Ducrot L; López IL; Orrego AH; López-Gallego F
    Chembiochem; 2024 Jan; 25(2):e202300673. PubMed ID: 37994376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hereditary diseases of coenzyme A thioester metabolism.
    Yang H; Zhao C; Wang Y; Wang SP; Mitchell GA
    Biochem Soc Trans; 2019 Feb; 47(1):149-155. PubMed ID: 30626707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Chemo-Enzymatic Road Map to the Synthesis of CoA Esters.
    Peter DM; Vögeli B; Cortina NS; Erb TJ
    Molecules; 2016 Apr; 21(4):517. PubMed ID: 27104508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of coenzyme A metabolism and its role in cellular toxicity.
    Brass EP
    Chem Biol Interact; 1994 Mar; 90(3):203-14. PubMed ID: 8168169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signalling functions of coenzyme A and its derivatives in mammalian cells.
    Davaapil H; Tsuchiya Y; Gout I
    Biochem Soc Trans; 2014 Aug; 42(4):1056-62. PubMed ID: 25110002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that a metabolic microcompartment contains and recycles private cofactor pools.
    Huseby DL; Roth JR
    J Bacteriol; 2013 Jun; 195(12):2864-79. PubMed ID: 23585538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-Independent and Cell-Free Biosynthesis of β-Hydroxy Acids Using Vinyl Esters as Smart Substrates.
    Orrego AH; Rubanu MG; López IL; Andrés-Sanz D; García-Marquina G; Pieslinger GE; Salassa L; López-Gallego F
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218312. PubMed ID: 36718873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel pathway for utilization of cyclopropanecarboxylate by Rhodococcus rhodochrous.
    Toraya T; Oka T; Ando M; Yamanishi M; Nishihara H
    Appl Environ Microbiol; 2004 Jan; 70(1):224-8. PubMed ID: 14711645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-chain acyl-CoA ester intermediates of beta-oxidation of mono- and di-carboxylic fatty acids by extracts of Corynebacterium sp. strain 7E1C.
    Broadway NM; Dickinson FM; Ratledge C
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):117-22. PubMed ID: 1637289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes.
    Hunt MC; Tillander V; Alexson SE
    Biochimie; 2014 Mar; 98():45-55. PubMed ID: 24389458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes.
    Dickert S; Pierik AJ; Linder D; Buckel W
    Eur J Biochem; 2000 Jun; 267(12):3874-84. PubMed ID: 10849007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malyl-CoA formation in the NAD-, CoASH-, and alpha-ketoglutarate dehydrogenase-dependent oxidation of 2-keto-4-hydroxyglutarate. Possible coupled role of this reaction with 2-keto-4-hydroxyglutarate aldolase activity in a pyruvate-catalyzed cyclic oxidation of glyoxylate.
    Gupta SC; Dekker EE
    J Biol Chem; 1984 Aug; 259(16):10012-9. PubMed ID: 6381479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal Cofactor Transport.
    Plett A; Charton L; Linka N
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32806597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation.
    Trefely S; Lovell CD; Snyder NW; Wellen KE
    Mol Metab; 2020 Aug; 38():100941. PubMed ID: 32199817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coenzyme A and its derivatives: renaissance of a textbook classic.
    Theodoulou FL; Sibon OC; Jackowski S; Gout I
    Biochem Soc Trans; 2014 Aug; 42(4):1025-32. PubMed ID: 25109997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native chemical ligation approach to sensitively probe tissue acyl-CoA pools.
    James AM; Norman AAI; Houghton JW; Prag HA; Logan A; Antrobus R; Hartley RC; Murphy MP
    Cell Chem Biol; 2022 Jul; 29(7):1232-1244.e5. PubMed ID: 35868236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus.
    Schmid G; René SB; Boll M
    Environ Microbiol; 2015 Sep; 17(9):3289-300. PubMed ID: 25630364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel characteristics of succinate coenzyme A (Succinate-CoA) ligases: conversion of malate to malyl-CoA and CoA-thioester formation of succinate analogues in vitro.
    Nolte JC; Schürmann M; Schepers CL; Vogel E; Wübbeler JH; Steinbüchel A
    Appl Environ Microbiol; 2014 Jan; 80(1):166-76. PubMed ID: 24141127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic CoA, S-acyl-CoA, biosynthetic precursors of the coenzyme and pantothenate-protein complexes in dietary pantothenic acid deficiency.
    Moiseenok AG; Sheibak VM; Gurinovich VA
    Int J Vitam Nutr Res; 1987; 57(1):71-7. PubMed ID: 3583597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of mitochondrial beta-oxidation at the levels of [NAD+]/[NADH] and CoA acylation.
    Eaton S; Middleton B; Sherratt HS; Pourfarzam M; Quant PA; Bartlett K
    Adv Exp Med Biol; 1999; 466():145-54. PubMed ID: 10709638
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.