These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37994489)

  • 1. Machine learning-derived identification of prognostic signature for improving prognosis and drug response in patients with ovarian cancer.
    Huan Q; Cheng S; Ma HF; Zhao M; Chen Y; Yuan X
    J Cell Mol Med; 2024 Jan; 28(1):e18021. PubMed ID: 37994489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-derived identification of tumor-infiltrating immune cell-related signature for improving prognosis and immunotherapy responses in patients with skin cutaneous melanoma.
    Leng S; Nie G; Yi C; Xu Y; Zhang L; Zhu L
    Cancer Cell Int; 2023 Sep; 23(1):214. PubMed ID: 37752452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies.
    Wu Q; Tian R; He X; Liu J; Ou C; Li Y; Fu X
    Front Immunol; 2023; 14():1164408. PubMed ID: 37090728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppressive stroma-immune prognostic signature impedes immunotherapy in ovarian cancer and can be reversed by PDGFRB inhibitors.
    Yang D; Duan MH; Yuan QE; Li ZL; Luo CH; Cui LY; Li LC; Xiao Y; Zhu XY; Zhang HL; Feng GK; Liu GC; Deng R; Li JD; Zhu XF
    J Transl Med; 2023 Sep; 21(1):586. PubMed ID: 37658364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and validation of pyroptosis-related gene landscape in prognosis and immunotherapy of ovarian cancer.
    Gao L; Ying F; Cai J; Peng M; Xiao M; Sun S; Zeng Y; Xiong Z; Cai L; Gao R; Wang Z
    J Ovarian Res; 2023 Jan; 16(1):27. PubMed ID: 36707884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-based identification of tumor-infiltrating immune cell-associated model with appealing implications in improving prognosis and immunotherapy response in bladder cancer patients.
    Chen H; Yang W; Ji Z
    Front Immunol; 2023; 14():1171420. PubMed ID: 37063886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing of programmed cell death gene signature for predicting ovarian cancer prognosis and treatment response.
    Lian X; Liu B; Wang C; Wang S; Zhuang Y; Li X
    Front Endocrinol (Lausanne); 2023; 14():1182776. PubMed ID: 37342266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel autophagy-related gene signature associated with prognosis and immune microenvironment in ovarian cancer.
    Yang J; Wang C; Zhang Y; Cheng S; Wu M; Gu S; Xu S; Wu Y; Wang Y
    J Ovarian Res; 2023 Apr; 16(1):86. PubMed ID: 37120633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of the interaction of antigen presentation during anti-tumour immunity and establishment of AIDPS systems in ovarian cancer.
    Sun W; Xu P; Gao K; Lian W; Sun X
    J Cell Mol Med; 2024 Apr; 28(8):e18309. PubMed ID: 38613345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning.
    Zhao B; Pei L
    BMC Med Genomics; 2023 Oct; 16(1):230. PubMed ID: 37784081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive machine-learning survival framework develops a consensus model in large-scale multicenter cohorts for pancreatic cancer.
    Wang L; Liu Z; Liang R; Wang W; Zhu R; Li J; Xing Z; Weng S; Han X; Sun YL
    Elife; 2022 Oct; 11():. PubMed ID: 36282174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an Autophagy-Related Signature for Prognosis and Immunotherapy Response Prediction in Ovarian Cancer.
    Ding J; Wang C; Sun Y; Guo J; Liu S; Cheng Z
    Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in prostate cancer.
    Zhu W; Zeng H; Huang J; Wu J; Wang Y; Wang Z; Wang H; Luo Y; Lai W
    J Transl Med; 2023 Nov; 21(1):782. PubMed ID: 37925432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic and immunotherapeutic potential of regulatory T cell-associated signature in ovarian cancer.
    Liu Y; Shan F; Sun Y; Kai H; Cao Y; Huang M; Liu J; Zhang P; Zheng Y
    J Cell Mol Med; 2024 Apr; 28(8):e18248. PubMed ID: 38520220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel pyroptosis-related signature for predicting prognosis and evaluating tumor immune microenvironment in ovarian cancer.
    Yang J; Wang C; Zhang Y; Cheng S; Xu Y; Wang Y
    J Ovarian Res; 2023 Sep; 16(1):196. PubMed ID: 37730669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer.
    Yan S; Fang J; Chen Y; Xie Y; Zhang S; Zhu X; Fang F
    BMC Cancer; 2020 Dec; 20(1):1205. PubMed ID: 33287740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis with machine learning identifies diagnostic and prognostic signatures in neuroblastoma based on differentially DNA methylated enhancers between INSS stage 4 and 4S neuroblastoma.
    Li S; Mi T; Jin L; Liu Y; Zhang Z; Wang J; Wu X; Ren C; Wang Z; Kong X; Liu J; Luo J; He D
    J Cancer Res Clin Oncol; 2024 Mar; 150(3):148. PubMed ID: 38512513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tumor-infiltrating immune cells-related pseudogenes signature based on machine-learning predicts outcomes and immunotherapy responses in ovarian cancer.
    Zhang Y; Guo M; Wang L; Weng S; Xu H; Ren Y; Liu L; Guo C; Cheng Q; Luo P; Zhang J; Han X
    Cell Signal; 2023 Nov; 111():110879. PubMed ID: 37659727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N6-methyladenosine-related lncRNAs is a potential marker for predicting prognosis and immunotherapy in ovarian cancer.
    Nie X; Tan J
    Hereditas; 2022 Mar; 159(1):17. PubMed ID: 35303965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-based Framework Develops a Tumor Thrombus Coagulation Signature in Multicenter Cohorts for Renal Cancer.
    Feng T; Wang Y; Zhang W; Cai T; Tian X; Su J; Zhang Z; Zheng S; Ye S; Dai B; Wang Z; Zhu Y; Zhang H; Chang K; Ye D
    Int J Biol Sci; 2024; 20(9):3590-3620. PubMed ID: 38993563
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.