BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37994563)

  • 1. Stimulus characteristics of a novel air-based multiple stimulus aesthesiometer.
    Mungalsingh MA; Thompson B; Peterson SD; Murphy PJ
    Ophthalmic Physiol Opt; 2024 Jan; 44(1):32-41. PubMed ID: 37994563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?
    Nosch DS; Pult H; Albon J; Purslow C; Murphy PJ
    Clin Exp Optom; 2018 Mar; 101(2):193-199. PubMed ID: 28922696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the stimulus of an air-jet aesthesiometer: computerised modelling and subjective interpretation.
    Golebiowski B; Lim M; Papas E; Stapleton F
    Ophthalmic Physiol Opt; 2013 Mar; 33(2):104-13. PubMed ID: 23406490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet-Bonnet aesthesiometer.
    Golebiowski B; Papas E; Stapleton F
    Exp Eye Res; 2011 May; 92(5):408-13. PubMed ID: 21376718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of the non-contact corneal aesthesiometer and its comparison with the Cochet-Bonnet aesthesiometer.
    Murphy PJ; Lawrenson JG; Patel S; Marshall J
    Ophthalmic Physiol Opt; 1998 Nov; 18(6):532-9. PubMed ID: 10070549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical application of the Swiss Liquid Jet Aesthesiometer for corneal sensitivity measurement.
    Nosch DS; Käser E; Bracher T; Joos RE
    Clin Exp Optom; 2024 Jan; 107(1):14-22. PubMed ID: 37019837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Working principle and relevant physical properties of the Swiss Liquid Jet Aesthesiometer for Corneal Sensitivity (SLACS) evaluation.
    Nosch DS; Oscity M; Steigmeier P; Käser E; Loepfe M; Joos RE
    Ophthalmic Physiol Opt; 2022 May; 42(3):609-618. PubMed ID: 35156726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physical and aerodynamic airflow relations of the air stream of the Micro-Air aesthesiometer].
    Kohlhaas M; Draeger J; Schmitz N; Böhm A; Bosse I; Hechler B
    Klin Monbl Augenheilkd; 1994 Oct; 205(4):218-25. PubMed ID: 7823522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.
    Murphy PJ; Morgan PB; Patel S; Marshall J
    Cornea; 1999 May; 18(3):333-42. PubMed ID: 10336038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Measuring corneal sensitivity with the air aesthesiometer in comparison with the Draeger electromagnetic air aesthesiometer].
    Kohlhaas M; Böhm A; Schmitz N; Draeger J
    Ophthalmologe; 1994 Oct; 91(5):685-90. PubMed ID: 7812106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters.
    Cai J; Hao W; Zhang C; Yu J; Wang T
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1273-1287. PubMed ID: 28379118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision, agreement and utility of a contemporary non-contact corneal aesthesiometer.
    Swanevelder SK; Misra SL; Tyler EF; McGhee CN
    Clin Exp Optom; 2020 Nov; 103(6):798-803. PubMed ID: 31869862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal Nerve Assessment by Aesthesiometry: History, Advancements, and Future Directions.
    Crabtree JR; Tannir S; Tran K; Boente CS; Ali A; Borschel GH
    Vision (Basel); 2024 May; 8(2):. PubMed ID: 38804355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative clinical assessment of corneal sensation with a new aesthesiometer.
    Beuerman RW; McCulley JP
    Am J Ophthalmol; 1978 Dec; 86(6):812-5. PubMed ID: 736079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The minimum stimulus energy required to produce a cooling sensation in the human cornea.
    Murphy PJ; Patel S; Morgan PB; Marshall J
    Ophthalmic Physiol Opt; 2001 Sep; 21(5):407-10. PubMed ID: 11563429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal sensitivity in silicone hydrogel and rigid gas permeable contact lens wear.
    Nosch DS; Käser E; Christen A; Schinzel J; Joos RE
    Cont Lens Anterior Eye; 2023 Oct; 46(5):101888. PubMed ID: 37422380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal and conjunctival sensitivity to air stimuli.
    Stapleton F; Tan ME; Papas EB; Ehrmann K; Golebiowski B; Vega J; Holden BA
    Br J Ophthalmol; 2004 Dec; 88(12):1547-51. PubMed ID: 15548810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ex Vivo Investigation of Tactile Aesthesiometer Force in Laryngopharyngeal Sensory Testing.
    Kidane J; Gochman GE; Boscardin WJ; Rosen CA; Young VN; Ma Y
    Laryngoscope; 2023 Aug; 133(8):1933-1937. PubMed ID: 36268981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new non-contact corneal aesthesiometer (NCCA).
    Murphy PJ; Patel S; Marshall J
    Ophthalmic Physiol Opt; 1996 Mar; 16(2):101-7. PubMed ID: 8762770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship Between the Degree of Iris Pigmentation and Corneal Sensitivity to a Cooling Stimulus.
    Ntola AM; Nosch DS; Joos RE; Murphy PJ
    Cornea; 2019 Jun; 38(6):674-683. PubMed ID: 30964757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.