BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37994825)

  • 1. Dilute to Enrich for Deeper Proteomics: A Yolk-Depleted Carrier for Limited Populations of Embryonic (Frog) Cells.
    Pade LR; Lombard-Banek C; Li J; Nemes P
    J Proteome Res; 2024 Feb; 23(2):692-703. PubMed ID: 37994825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry.
    Baxi AB; Lombard-Banek C; Moody SA; Nemes P
    ACS Chem Neurosci; 2018 Aug; 9(8):2064-2073. PubMed ID: 29578674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.
    Sun L; Dubiak KM; Peuchen EH; Zhang Z; Zhu G; Huber PW; Dovichi NJ
    Anal Chem; 2016 Jul; 88(13):6653-7. PubMed ID: 27314579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Lineage Guided Mass Spectrometry Proteomics in the Developing (Frog) Embryo.
    Baxi AB; Pade LR; Nemes P
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos.
    Lombard-Banek C; Moody SA; Manzini MC; Nemes P
    Anal Chem; 2019 Apr; 91(7):4797-4805. PubMed ID: 30827088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS).
    Lombard-Banek C; Reddy S; Moody SA; Nemes P
    Mol Cell Proteomics; 2016 Aug; 15(8):2756-68. PubMed ID: 27317400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics Analysis of Early Developmental Stages of Zebrafish Embryos.
    Purushothaman K; Das PP; Presslauer C; Lim TK; Johansen SD; Lin Q; Babiak I
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31861170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Streamlined Protocol for Deep Proteomic Profiling of FAC-sorted Cells and Its Application to Freshly Isolated Murine Immune Cells.
    Myers SA; Rhoads A; Cocco AR; Peckner R; Haber AL; Schweitzer LD; Krug K; Mani DR; Clauser KR; Rozenblatt-Rosen O; Hacohen N; Regev A; Carr SA
    Mol Cell Proteomics; 2019 May; 18(5):995-1009. PubMed ID: 30792265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos.
    Peuchen EH; Sun L; Dovichi NJ
    Anal Bioanal Chem; 2016 Jul; 408(17):4743-9. PubMed ID: 27137514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Proteomics of Xenopus Embryos I, Sample Preparation.
    Gupta M; Sonnett M; Ryazanova L; Presler M; Wühr M
    Methods Mol Biol; 2018; 1865():175-194. PubMed ID: 30151767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism and pattern of yolk consumption provide insight into embryonic nutrition in Xenopus.
    Jorgensen P; Steen JA; Steen H; Kirschner MW
    Development; 2009 May; 136(9):1539-48. PubMed ID: 19363155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.
    Rahlouni F; Szarka S; Shulaev V; Prokai L
    Zebrafish; 2015 Dec; 12(6):398-407. PubMed ID: 26439676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Proteomics for Xenopus Embryos II, Data Analysis.
    Sonnett M; Gupta M; Nguyen T; Wühr M
    Methods Mol Biol; 2018; 1865():195-215. PubMed ID: 30151768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary Electrophoresis Mass Spectrometry for Scalable Single-Cell Proteomics.
    Shen B; Pade LR; Choi SB; Muñoz-LLancao P; Manzini MC; Nemes P
    Front Chem; 2022; 10():863979. PubMed ID: 35464213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass Spectrometry-Based Absolute Quantification of Single
    Lindeboom RGH; Smits AH; Perino M; Veenstra GJC; Vermeulen M
    Cold Spring Harb Protoc; 2019 Jun; 2019(6):. PubMed ID: 30104410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis.
    Baxi AB; Pade LR; Nemes P
    Curr Top Dev Biol; 2021; 145():205-231. PubMed ID: 34074530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomics of Xenopus development.
    Sun L; Champion MM; Huber PW; Dovichi NJ
    Mol Hum Reprod; 2016 Mar; 22(3):193-9. PubMed ID: 26396253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database.
    Wühr M; Freeman RM; Presler M; Horb ME; Peshkin L; Gygi S; Kirschner MW
    Curr Biol; 2014 Jul; 24(13):1467-1475. PubMed ID: 24954049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deeper look at carrier proteome effects for single-cell proteomics.
    Ye Z; Batth TS; Rüther P; Olsen JV
    Commun Biol; 2022 Feb; 5(1):150. PubMed ID: 35194133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental neurogenesis in mouse and Xenopus is impaired in the absence of Nosip.
    Hoffmeister M; Krieg J; Ehrke A; Seigfried FA; Wischmann L; Dietmann P; Kühl SJ; Oess S
    Dev Biol; 2017 Sep; 429(1):200-212. PubMed ID: 28663132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.