These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37994966)

  • 1. Automatic image segmentation and online survival prediction model of medulloblastoma based on machine learning.
    Zhou L; Ji Q; Peng H; Chen F; Zheng Y; Jiao Z; Gong J; Li W
    Eur Radiol; 2024 Jun; 34(6):3644-3655. PubMed ID: 37994966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiparametric MRI-Based Radiomics Signature with Machine Learning for Preoperative Prediction of Prognosis Stratification in Pediatric Medulloblastoma.
    Luo Y; Zhuang Y; Zhang S; Wang J; Teng S; Zeng H
    Acad Radiol; 2024 Apr; 31(4):1629-1642. PubMed ID: 37643930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.
    Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M
    Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI Radiomics Signature of Pediatric Medulloblastoma Improves Risk Stratification Beyond Clinical and Conventional MR Imaging Features.
    Zheng H; Li J; Liu H; Ting G; Yin Q; Li R; Liu M; Zhang Y; Duan S; Li Y; Wang D
    J Magn Reson Imaging; 2023 Jul; 58(1):236-246. PubMed ID: 36412264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two machine learning methods identify a metastasis-related prognostic model that predicts overall survival in medulloblastoma patients.
    Chen K; Huang B; Yan S; Xu S; Li K; Zhang K; Wang Q; Zhuang Z; Wei L; Zhang Y; Liu M; Lian H; Zhong C
    Aging (Albany NY); 2020 Nov; 12(21):21481-21503. PubMed ID: 33159021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram.
    Zhong J; Zhang C; Hu Y; Zhang J; Liu Y; Si L; Xing Y; Ding D; Geng J; Jiao Q; Zhang H; Yang G; Yao W
    Eur Radiol; 2022 Sep; 32(9):6196-6206. PubMed ID: 35364712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival.
    Zhang X; Lu H; Tian Q; Feng N; Yin L; Xu X; Du P; Liu Y
    Eur Radiol; 2019 Oct; 29(10):5528-5538. PubMed ID: 30847586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics signature for the prediction of progression-free survival and radiotherapeutic benefits in pediatric medulloblastoma.
    Liu ZM; Zhang H; Ge M; Hao XL; An X; Tian YJ
    Childs Nerv Syst; 2022 Jun; 38(6):1085-1094. PubMed ID: 35394210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients.
    Yang L; Yang J; Zhou X; Huang L; Zhao W; Wang T; Zhuang J; Tian J
    Eur Radiol; 2019 May; 29(5):2196-2206. PubMed ID: 30523451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid clinical-radiomics model based on fully automatic segmentation for predicting the early expansion of spontaneous intracerebral hemorrhage: A multi-center study.
    Wang M; Liang Y; Li H; Chen J; Fu H; Wang X; Xie Y
    J Stroke Cerebrovasc Dis; 2024 Nov; 33(11):107979. PubMed ID: 39222703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel nomogram for predicting overall survival in patients with tongue squamous cell carcinoma using clinical features and MRI radiomics data: a pilot study.
    Yao Y; Jin X; Peng T; Song P; Ye Y; Song L; Li H; An P
    World J Surg Oncol; 2024 Aug; 22(1):227. PubMed ID: 39198807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-institutional validation of a radiomics signature for identification of postoperative progression of soft tissue sarcoma.
    Yu Y; Guo H; Zhang M; Hou F; Yang S; Huang C; Duan L; Wang H
    Cancer Imaging; 2024 May; 24(1):59. PubMed ID: 38720384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors.
    Tan Y; Mu W; Wang XC; Yang GQ; Gillies RJ; Zhang H
    Eur J Radiol; 2019 Nov; 120():108609. PubMed ID: 31606714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An MRI-based radiomics signature and clinical characteristics for survival prediction in early-stage cervical cancer.
    Zheng RR; Cai MT; Lan L; Huang XW; Yang YJ; Powell M; Lin F
    Br J Radiol; 2022 Jan; 95(1129):20210838. PubMed ID: 34797703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram.
    Lin M; Lin N; Yu S; Sha Y; Zeng Y; Liu A; Niu Y
    Acad Radiol; 2023 Oct; 30(10):2201-2211. PubMed ID: 36925335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer.
    Zhou Y; Gu HL; Zhang XL; Tian ZF; Xu XQ; Tang WW
    Eur Radiol; 2022 Apr; 32(4):2540-2551. PubMed ID: 34642807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An MRI-Based Radiomics Nomogram to Assess Recurrence Risk in Sinonasal Malignant Tumors.
    Wang T; Hao J; Gao A; Zhang P; Wang H; Nie P; Jiang Y; Bi S; Liu S; Hao D
    J Magn Reson Imaging; 2023 Aug; 58(2):520-531. PubMed ID: 36448476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme.
    Lao J; Chen Y; Li ZC; Li Q; Zhang J; Liu J; Zhai G
    Sci Rep; 2017 Sep; 7(1):10353. PubMed ID: 28871110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical-MRI radiomics enables the prediction of preoperative cerebral spinal fluid dissemination in children with medulloblastoma.
    Zheng H; Li J; Liu H; Wu C; Gui T; Liu M; Zhang Y; Duan S; Li Y; Wang D
    World J Surg Oncol; 2021 Apr; 19(1):134. PubMed ID: 33888125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery.
    Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H
    Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.