These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 37994988)
21. Separation, identification, and design of α-glucosidase inhibitory peptides based on the molecular mechanism from Paeonia ostii 'Feng Dan' seed protein. Wei R; Lin L; Li T; Li C; Chen B; Shen Y J Food Sci; 2022 Nov; 87(11):4892-4904. PubMed ID: 36205483 [TBL] [Abstract][Full Text] [Related]
22. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Karimi A; Azizi MH; Ahmadi Gavlighi H Food Sci Nutr; 2020 May; 8(5):2395-2405. PubMed ID: 32405396 [TBL] [Abstract][Full Text] [Related]
23. Bioactivity Guided Study for the Isolation and Identification of Antidiabetic Compounds from Edible Seaweed- Unnikrishnan PS; Animish A; Madhumitha G; Suthindhiran K; Jayasri MA Molecules; 2022 Dec; 27(24):. PubMed ID: 36557959 [TBL] [Abstract][Full Text] [Related]
24. Efficacy of Euphorbia helioscopia in context to a possible connection between antioxidant and antidiabetic activities: a comparative study of different extracts. Mustafa I; Faisal MN; Hussain G; Muzaffar H; Imran M; Ijaz MU; Sohail MU; Iftikhar A; Shaukat A; Anwar H BMC Complement Med Ther; 2021 Feb; 21(1):62. PubMed ID: 33579270 [TBL] [Abstract][Full Text] [Related]
25. Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. Baba WN; Mudgil P; Kamal H; Kilari BP; Gan CY; Maqsood S J Dairy Sci; 2021 Feb; 104(2):1364-1377. PubMed ID: 33309363 [TBL] [Abstract][Full Text] [Related]
26. Simulated gastrointestinal digestion of camel and bovine casein hydrolysates: Identification and characterization of novel anti-diabetic bioactive peptides. Mudgil P; Kamal H; Priya Kilari B; Mohd Salim MAS; Gan CY; Maqsood S Food Chem; 2021 Aug; 353():129374. PubMed ID: 33740505 [TBL] [Abstract][Full Text] [Related]
27. Identification, characterization and in vitro activity of hypoglycemic peptides in whey hydrolysates from rubing cheese by-product. Li Y; Fan Y; Liu J; Meng Z; Huang A; Xu F; Wang X Food Res Int; 2023 Feb; 164():112382. PubMed ID: 36737967 [TBL] [Abstract][Full Text] [Related]
28. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
29. In-Silico Analysis and Antidiabetic Effect of α-Amylase and α-Glucosidase Inhibitory Peptides from Lupin Protein Hydrolysate: Enzyme-Peptide Interaction Study Using Molecular Docking Approach. Fadimu GJ; Farahnaky A; Gill H; Olalere OA; Gan CY; Truong T Foods; 2022 Oct; 11(21):. PubMed ID: 36359988 [TBL] [Abstract][Full Text] [Related]
31. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Fan S; Liu Q; Du Q; Zeng X; Wu Z; Pan D; Tu M Int J Biol Macromol; 2024 Nov; 279(Pt 1):134993. PubMed ID: 39181375 [TBL] [Abstract][Full Text] [Related]
32. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Quaresma DMO; Justino AB; Sousa RMF; Munoz RAA; de Aquino FJT; Martins MM; Goulart LR; Pivatto M; Espindola FS; de Oliveira A Bioorg Chem; 2020 Dec; 105():104335. PubMed ID: 33074116 [TBL] [Abstract][Full Text] [Related]
33. [Inhibitory effect of peptide fractions derivatives from chia (Salvia hispanica) hydrolysis against α-amylase and α-glucosidase enzymes]. Sosa Crespo I; Laviada Molina H; Chel Guerrero L; Ortiz Andrade R; Betancur Ancona D Nutr Hosp; 2018 Aug; 35(4):928-935. PubMed ID: 30070884 [TBL] [Abstract][Full Text] [Related]
34. Antidiabetic effects of Syzygium cumini leaves: A non-hemolytic plant with potential against process of oxidation, glycation, inflammation and digestive enzymes catalysis. Franco RR; Ribeiro Zabisky LF; Pires de Lima Júnior J; Mota Alves VH; Justino AB; Saraiva AL; Goulart LR; Espindola FS J Ethnopharmacol; 2020 Oct; 261():113132. PubMed ID: 32673709 [TBL] [Abstract][Full Text] [Related]
35. Antioxidant and Hypoglycemic Activity of Sequentially Extracted Fractions from Pingguoli Pear Fermentation Broth and Identification of Bioactive Compounds. Dai J; Hu Y; Si Q; Gu Y; Xiao Z; Ge Q; Sha R Molecules; 2022 Sep; 27(18):. PubMed ID: 36144810 [TBL] [Abstract][Full Text] [Related]
36. Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. Mojica L; Chen K; de Mejía EG J Food Sci; 2015 Jan; 80(1):H188-98. PubMed ID: 25495131 [TBL] [Abstract][Full Text] [Related]
37. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on α-glucosidase and angiotensin I converting enzyme. Uraipong C; Zhao J J Sci Food Agric; 2018 Jan; 98(2):758-766. PubMed ID: 28677835 [TBL] [Abstract][Full Text] [Related]
39. Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb. Nazir N; Zahoor M; Uddin F; Nisar M BMC Complement Med Ther; 2021 Feb; 21(1):73. PubMed ID: 33618705 [TBL] [Abstract][Full Text] [Related]
40. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Mojica L; de Mejía EG Food Funct; 2016 Feb; 7(2):713-27. PubMed ID: 26824775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]