BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37995362)

  • 1. Enhancing EEG-based cross-day mental workload classification using periodic component of power spectrum.
    Ke Y; Wang T; He F; Liu S; Ming D
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 37995362
    [No Abstract]   [Full Text] [Related]  

  • 2. Open multi-session and multi-task EEG cognitive Dataset for passive brain-computer Interface Applications.
    Hinss MF; Jahanpour ES; Somon B; Pluchon L; Dehais F; Roy RN
    Sci Data; 2023 Feb; 10(1):85. PubMed ID: 36765121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Individual User's Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain-Computer Interface Applications.
    Cha HS; Han CH; Im CH
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32059543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based detection of mental workload level and stress: the effect of variation in each state on classification of the other.
    Bagheri M; Power SD
    J Neural Eng; 2020 Oct; 17(5):056015. PubMed ID: 32987366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Task Consistency of Electroencephalography-Based Mental Workload Indicators: Comparisons Between Power Spectral Density and Task-Irrelevant Auditory Event-Related Potentials.
    Ke Y; Jiang T; Liu S; Cao Y; Jiao X; Jiang J; Ming D
    Front Neurosci; 2021; 15():703139. PubMed ID: 34867143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raw Electroencephalogram-Based Cognitive Workload Classification Using Directed and Nondirected Functional Connectivity Analysis and Deep Learning.
    Gupta A; Daniel R; Rao A; Roy PP; Chandra S; Kim BG
    Big Data; 2023 Aug; 11(4):307-319. PubMed ID: 36848586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection.
    Wei CS; Lin YP; Wang YT; Lin CT; Jung TP
    Neuroimage; 2018 Jul; 174():407-419. PubMed ID: 29578026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Classification of Both Mental Workload and Stress Level Suitable for an Online Passive Brain-Computer Interface.
    Bagheri M; Power SD
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mental workload classification based on ignored auditory probes and spatial covariance.
    Tang S; Liu C; Zhang Q; Gu H; Li X; Li Z
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34280906
    [No Abstract]   [Full Text] [Related]  

  • 11. Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding.
    Jeng PY; Wei CS; Jung TP; Wang LC
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1915-1925. PubMed ID: 32960770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations.
    Gerster M; Waterstraat G; Litvak V; Lehnertz K; Schnitzler A; Florin E; Curio G; Nikulin V
    Neuroinformatics; 2022 Oct; 20(4):991-1012. PubMed ID: 35389160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.
    Aricò P; Borghini G; Di Flumeri G; Colosimo A; Pozzi S; Babiloni F
    Prog Brain Res; 2016; 228():295-328. PubMed ID: 27590973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends.
    Arico P; Borghini G; Di Flumeri G; Sciaraffa N; Colosimo A; Babiloni F
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1431-1436. PubMed ID: 28436837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using robust principal component analysis to alleviate day-to-day variability in EEG based emotion classification.
    Ping-Keng Jao ; Yuan-Pin Lin ; Yi-Hsuan Yang ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():570-3. PubMed ID: 26736326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-based discrimination of different cognitive workload levels from mental arithmetic.
    Chin ZY; Zhang X; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1984-1987. PubMed ID: 30440788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Affect and Workload Recognition in a Virtual Driving Environment for ASD Intervention.
    Fan J; Wade JW; Key AP; Warren ZE; Sarkar N
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):43-51. PubMed ID: 28422647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling age-independent spectral markers of propofol-induced loss of consciousness by decomposing the electroencephalographic spectrum into its periodic and aperiodic components.
    Leroy S; Major S; Bublitz V; Dreier JP; Koch S
    Front Aging Neurosci; 2022; 14():1076393. PubMed ID: 36742202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of mental workload using brain connectivity and machine learning on electroencephalogram data.
    Safari M; Shalbaf R; Bagherzadeh S; Shalbaf A
    Sci Rep; 2024 Apr; 14(1):9153. PubMed ID: 38644365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG-based detection of modality-specific visual and auditory sensory processing.
    Massaeli F; Bagheri M; Power SD
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36749989
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.