These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37995363)

  • 21. Microdosimetric study for secondary neutrons in phantom produced by a 290 MeV/nucleon carbon beam.
    Endo S; Tanaka K; Takada M; Onizuka Y; Miyahara N; Sato T; Ishikawa M; Maeda N; Hayabuchi N; Shizuma K; Hoshi M
    Med Phys; 2007 Sep; 34(9):3571-8. PubMed ID: 17926960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.
    Jung JY; Yoon DK; Barraclough B; Lee HC; Suh TS; Lu B
    Oncotarget; 2017 Jun; 8(24):39774-39781. PubMed ID: 28427153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the physical interactions of therapeutic proton beams in water with the use of Geant4 Monte Carlo calculations.
    Morávek Z; Bogner L
    Z Med Phys; 2009; 19(3):174-81. PubMed ID: 19761094
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay.
    Lysakovski P; Besuglow J; Kopp B; Mein S; Tessonnier T; Ferrari A; Haberer T; Debus J; Mairani A
    Med Phys; 2023 Apr; 50(4):2510-2524. PubMed ID: 36542403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.
    Lee C; Lee S; Lee SJ; Song H; Kim DH; Cho S; Jo K; Han Y; Chung YH; Kim JS
    PLoS One; 2017; 12(10):e0186544. PubMed ID: 29045491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center.
    Tessonnier T; Böhlen TT; Ceruti F; Ferrari A; Sala P; Brons S; Haberer T; Debus J; Parodi K; Mairani A
    Phys Med Biol; 2017 Jul; 62(16):6579-6594. PubMed ID: 28650846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic field effects on particle beams and their implications for dose calculation in MR-guided particle therapy.
    Fuchs H; Moser P; Gröschl M; Georg D
    Med Phys; 2017 Mar; 44(3):1149-1156. PubMed ID: 28090633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of energy deposition and secondary particle production in proton therapy of brain using a slab head phantom.
    Jia SB; Hadizadeh MH; Mowlavi AA; Loushab ME
    Rep Pract Oncol Radiother; 2014 Nov; 19(6):376-84. PubMed ID: 25337410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neutron shielding assessment of a
    Ounoughi N; Boukhellout A; Kharfi F
    J Radiol Prot; 2023 Jan; 43(1):. PubMed ID: 36599152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the effects of biomaterials on proton Bragg peak and secondary neutron production by the Monte Carlo method in the slab head phantom.
    Pehlivanlı A; Bölükdemir MH
    Appl Radiat Isot; 2022 Feb; 180():110060. PubMed ID: 34902774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams.
    Van Delinder KW; Khan R; Gräfe JL
    Sci Rep; 2020 Aug; 10(1):13417. PubMed ID: 32770174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The determination of a dose deposited in reference medium due to (p,n) reaction occurring during proton therapy.
    Dawidowska A; Ferszt MP; Konefał A
    Rep Pract Oncol Radiother; 2014 May; 19(Suppl):S3-S8. PubMed ID: 28443192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water.
    Taleei R; Hultqvist M; Gudowska I; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Benchmarking a GATE/Geant4 Monte Carlo model for proton beams in magnetic fields.
    Padilla-Cabal F; Alejandro Fragoso J; Franz Resch A; Georg D; Fuchs H
    Med Phys; 2020 Jan; 47(1):223-233. PubMed ID: 31661559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.