These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37995363)
41. Monte Carlo simulation of fast neutron spectra: mean lineal energy estimation with an effectiveness function and correlation to RBE. Pignol J; Slabbert J; Binns P Int J Radiat Oncol Biol Phys; 2001 Jan; 49(1):251-60. PubMed ID: 11163522 [TBL] [Abstract][Full Text] [Related]
42. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams. Fujita Y; Myojoyama A; Saitoh H Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930 [TBL] [Abstract][Full Text] [Related]
43. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT. Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534 [TBL] [Abstract][Full Text] [Related]
44. Comparison doses of secondary neutron with the heavy ions in a 75-Mev/n heavy ion beam. Dang B; Li W; Wang J Radiat Prot Dosimetry; 2005; 117(4):369-72. PubMed ID: 16046558 [TBL] [Abstract][Full Text] [Related]
45. Monte Carlo simulations of ³He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Taleei R; Guan F; Peeler C; Bronk L; Patel D; Mirkovic D; Grosshans DR; Mohan R; Titt U Med Phys; 2016 Feb; 43(2):761-76. PubMed ID: 26843239 [TBL] [Abstract][Full Text] [Related]
46. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture therapy. Yanch JC; Zhou XL; Brownell GL Radiat Res; 1991 Apr; 126(1):1-20. PubMed ID: 2020734 [TBL] [Abstract][Full Text] [Related]
47. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Allen DA; Beynon TD; Green S Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400 [TBL] [Abstract][Full Text] [Related]
48. Fast neutron energy based modelling of biological effectiveness with implications for proton and ion beams. Jones B Phys Med Biol; 2021 Feb; 66(4):045028. PubMed ID: 33472183 [TBL] [Abstract][Full Text] [Related]
49. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20-250 MeV. Olsher RH; McLean TD; Justus AL; Devine RT; Gadd MS Radiat Prot Dosimetry; 2010 Mar; 138(3):199-204. PubMed ID: 19887515 [TBL] [Abstract][Full Text] [Related]
50. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals. Li G; Jiang W; Zhang L; Chen W; Li Q Front Public Health; 2021; 9():642561. PubMed ID: 33777888 [TBL] [Abstract][Full Text] [Related]
51. Microdosimetry of proton and carbon ions. Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531 [TBL] [Abstract][Full Text] [Related]
52. Comparison of basic features of proton and helium ion pencil beams in water using GATE. Ströbele J; Schreiner T; Fuchs H; Georg D Z Med Phys; 2012 Sep; 22(3):170-8. PubMed ID: 22265081 [TBL] [Abstract][Full Text] [Related]
53. Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes. Robert C; Dedes G; Battistoni G; Böhlen TT; Buvat I; Cerutti F; Chin MP; Ferrari A; Gueth P; Kurz C; Lestand L; Mairani A; Montarou G; Nicolini R; Ortega PG; Parodi K; Prezado Y; Sala PR; Sarrut D; Testa E Phys Med Biol; 2013 May; 58(9):2879-99. PubMed ID: 23571094 [TBL] [Abstract][Full Text] [Related]
54. Neutrons in active proton therapy: Parameterization of dose and dose equivalent. Schneider U; Hälg RA; Lomax T Z Med Phys; 2017 Jun; 27(2):113-123. PubMed ID: 27524678 [TBL] [Abstract][Full Text] [Related]
55. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields. Schmitz T; Bassler N; Blaickner M; Ziegner M; Hsiao MC; Liu YH; Koivunoro H; Auterinen I; Serén T; Kotiluoto P; Palmans H; Sharpe P; Langguth P; Hampel G Med Phys; 2015 Jan; 42(1):400-11. PubMed ID: 25563280 [TBL] [Abstract][Full Text] [Related]
56. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy. Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463 [TBL] [Abstract][Full Text] [Related]
57. Radiation shielding assessment of high-energy proton imaging at a proton therapy facility. Penfold SN Med Phys; 2022 Aug; 49(8):5340-5346. PubMed ID: 35611603 [TBL] [Abstract][Full Text] [Related]
59. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio. Van Delinder KW; Khan R; Gräfe JL Med Phys; 2021 Jul; 48(7):4004-4016. PubMed ID: 33959981 [TBL] [Abstract][Full Text] [Related]
60. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation. Howell RM; Burgett EA; Isaacs D; Price Hedrick SG; Reilly MP; Rankine LJ; Grantham KK; Perkins S; Klein EE Int J Radiat Oncol Biol Phys; 2016 May; 95(1):249-257. PubMed ID: 27084645 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]