These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37995363)
101. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line. Romano F; Cirrone GA; Cuttone G; Rosa FD; Mazzaglia SE; Petrovic I; Fira AR; Varisano A Phys Med Biol; 2014 Jun; 59(12):2863-82. PubMed ID: 24828462 [TBL] [Abstract][Full Text] [Related]
102. Radioactivation effects of titanium caused by clinical proton beam: a simulation study. Kato R; Kato T; Murakami M Biomed Phys Eng Express; 2024 Jan; 10(2):. PubMed ID: 38128147 [No Abstract] [Full Text] [Related]
103. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination. Liu B; Xu J; Liu T; Ouyang X Br J Radiol; 2012 Oct; 85(1018):e925-32. PubMed ID: 22573293 [TBL] [Abstract][Full Text] [Related]
104. Carbon-11 and Carbon-12 beam range verifications through prompt gamma and annihilation gamma measurements: Monte Carlo simulations. Chalise AR; Chi Y; Lai Y; Shao Y; Jin M Biomed Phys Eng Express; 2020 Nov; 6(6):. PubMed ID: 34040798 [TBL] [Abstract][Full Text] [Related]
105. Geant4 Monte Carlo simulation study of the secondary radiation fields at the laser-driven ion source LION. Tisi M; Mares V; Schreiber J; Englbrecht FS; Rühm W Sci Rep; 2021 Dec; 11(1):24418. PubMed ID: 34952912 [TBL] [Abstract][Full Text] [Related]
106. An investigation of neutron shielding and activation performances of four types of concrete for carbon ion therapy facility. Yang Y; Ma F; Zhou X; Li W; Su Y; Xu C; Jiang B Appl Radiat Isot; 2024 Apr; 206():111233. PubMed ID: 38340532 [TBL] [Abstract][Full Text] [Related]
107. Conceptual design of sandwich walls for shielding against secondary neutrons using MC simulations with FLUKA. Bexheti R; Ristova M Appl Radiat Isot; 2024 Sep; 214():111525. PubMed ID: 39332269 [TBL] [Abstract][Full Text] [Related]
108. Dose Measurements at Provision Proton Therapy Center. Burahmah N; Heilbronn L Health Phys; 2024 Apr; 126(4):252-258. PubMed ID: 38381973 [TBL] [Abstract][Full Text] [Related]
109. Characterisation and Quenching Correction for an Al de Freitas Nascimento L; Leblans P; van der Heyden B; Akselrod M; Goossens J; Correa Rocha LE; Vaniqui A; Verellen D Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501879 [TBL] [Abstract][Full Text] [Related]
110. Monte Carlo calculations of target fragments from helium and carbon ion interactions with water. Rashed Nizam QM; Ahmed A; Ahmed I; Sihver L Z Med Phys; 2024 Oct; ():. PubMed ID: 39393948 [TBL] [Abstract][Full Text] [Related]
111. Liquid water radiolysis induced by secondary electrons generated from MeV-energy carbon ions. Tsuchida H; Tezuka T; Kai T; Matsuya Y; Majima T; Saito M J Chem Phys; 2024 Sep; 161(10):. PubMed ID: 39254164 [TBL] [Abstract][Full Text] [Related]
112. Comparison of H*(10) estimations, due to neutrons and γ-rays, around FANT with two Cevallos-Robalino LE; García-Fernández G; Gallego E; Vega-Carrillo HR; De Juan Carbonell L; García-Baonza R; Lorente A Appl Radiat Isot; 2024 Mar; 205():111159. PubMed ID: 38150847 [TBL] [Abstract][Full Text] [Related]
113. The initial measurement of a compact D-T neutron spectrometer based on a single-crystal chemical vapor deposition diamond stack for fusion plasma diagnostic. Liao LY; Ogawa K; Sangaroon S; Paenthong W; Kusaka S; Tamaki S; Murata I; Isobe M Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39051856 [TBL] [Abstract][Full Text] [Related]
114. Design and performance of an epithermal neutron detector based on PFN. Yang Y; Zhang X; Zhang Y; Tang B; Qu J; Qiu J; Fu C; Wang G Appl Radiat Isot; 2024 Aug; 210():111369. PubMed ID: 38805983 [TBL] [Abstract][Full Text] [Related]
115. A novel experimental approach to characterize neutron fields at high- and low-energy particle accelerators. Braccini S; Casolaro P; Dellepiane G; Mateu I; Mercolli L; Pola A; Rastelli D; Scampoli P Sci Rep; 2022 Oct; 12(1):16886. PubMed ID: 36207394 [TBL] [Abstract][Full Text] [Related]
116. Method for fabricating a mesh ripple filter for charged-particle therapy. Tanaka S; Inaniwa T Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38941999 [No Abstract] [Full Text] [Related]
117. The Contribution of Secondary Particles Following Carbon Ion Radiotherapy to Soft Errors in CIEDs. Kawakami Y; Sakai M; Masuda H; Miyajima M; Kanzaki T; Kobayashi K; Ohno T; Sakurai H IEEE Open J Eng Med Biol; 2024; 5():157-162. PubMed ID: 38487101 [No Abstract] [Full Text] [Related]
118. Physical model of neutron scattering by clathrate hydrate and C60hosting paramagnetic oxygen molecules. Xu 许树琪 S; DiJulio DD; Marquez Damian JI; Kittelmann T; Bernasconi M; Campi D; Abou El Kheir O; Laporte SI; Rataj B; Czamler V; Zimmer O; Gorini G; Santoro V; Muhrer G J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38885691 [TBL] [Abstract][Full Text] [Related]
119. Simulation of secondary electron yields from thin metal foils after fast proton impact. Travia A; Dingfelder M Radiat Prot Dosimetry; 2011 Feb; 143(2-4):139-44. PubMed ID: 21212079 [TBL] [Abstract][Full Text] [Related]
120. Characterisation of neutron fields at the n-lab, a fast neutron facility at the University of Cape Town. Hutton T; Buffler A Appl Radiat Isot; 2024 Apr; 206():111196. PubMed ID: 38309120 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]