BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37995691)

  • 21. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of RNA polymerase III transcription by Maf1 protein.
    Cieśla M; Boguta M
    Acta Biochim Pol; 2008; 55(2):215-25. PubMed ID: 18560610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
    Donze D
    Gene; 2012 Feb; 493(2):169-75. PubMed ID: 21986035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcription by RNA polymerase III: insights into mechanism and regulation.
    Turowski TW; Tollervey D
    Biochem Soc Trans; 2016 Oct; 44(5):1367-1375. PubMed ID: 27911719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo.
    Kassavetis GA; Steiner DF
    J Biol Chem; 2006 Mar; 281(11):7445-51. PubMed ID: 16407207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A regulatory phosphorylation site on Mec1 controls chromatin occupancy of RNA polymerases during replication stress.
    Hurst V; Challa K; Jonas F; Forey R; Sack R; Seebacher J; Schmid CD; Barkai N; Shimada K; Gasser SM; Poli J
    EMBO J; 2021 Nov; 40(21):e108439. PubMed ID: 34569643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shaping the chromatin landscape at rRNA and tRNA genes, an emerging new role for RNA polymerase II transcription?
    Yague-Sanz C
    Yeast; 2024 Apr; 41(4):135-147. PubMed ID: 38126234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identical components of yeast transcription factor IIIB are required and sufficient for transcription of TATA box-containing and TATA-less genes.
    Joazeiro CA; Kassavetis GA; Geiduschek EP
    Mol Cell Biol; 1994 Apr; 14(4):2798-808. PubMed ID: 8139577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery.
    Willis IM; Moir RD
    Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A minimal promoter for TFIIIC-dependent in vitro transcription of snoRNA and tRNA genes by RNA polymerase III.
    Guffanti E; Ferrari R; Preti M; Forloni M; Harismendy O; Lefebvre O; Dieci G
    J Biol Chem; 2006 Aug; 281(33):23945-57. PubMed ID: 16787917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA polymerase II (RNAP II)-associated factors are recruited to tRNA loci, revealing that RNAP II- and RNAP III-mediated transcriptions overlap in yeast.
    Trotta E
    J Biol Chem; 2019 Aug; 294(33):12349-12358. PubMed ID: 31235518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unique nucleosome arrangement, maintained actively by chromatin remodelers facilitates transcription of yeast tRNA genes.
    Kumar Y; Bhargava P
    BMC Genomics; 2013 Jun; 14():402. PubMed ID: 23767421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics.
    Shukla A; Bhargava P
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):295-309. PubMed ID: 29313808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Positive modulation of RNA polymerase III transcription by ribosomal proteins.
    Dieci G; Ruotolo R; Braglia P; Carles C; Carpentieri A; Amoresano A; Ottonello S
    Biochem Biophys Res Commun; 2009 Feb; 379(2):489-93. PubMed ID: 19116144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation.
    Graczyk D; Debski J; Muszyńska G; Bretner M; Lefebvre O; Boguta M
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4926-31. PubMed ID: 21383183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel upstream RNA polymerase III promoter element becomes essential when the chromatin structure of the yeast U6 RNA gene is altered.
    Martin MP; Gerlach VL; Brow DA
    Mol Cell Biol; 2001 Oct; 21(19):6429-39. PubMed ID: 11533232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intragenic promoter adaptation and facilitated RNA polymerase III recycling in the transcription of SCR1, the 7SL RNA gene of Saccharomyces cerevisiae.
    Dieci G; Giuliodori S; Catellani M; Percudani R; Ottonello S
    J Biol Chem; 2002 Mar; 277(9):6903-14. PubMed ID: 11741971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reprogramming mRNA Expression in Response to Defect in RNA Polymerase III Assembly in the Yeast
    Rudzińska I; Cieśla M; Turowski TW; Armatowska A; Leśniewska E; Boguta M
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae.
    Soragni E; Kassavetis GA
    J Biol Chem; 2008 Sep; 283(39):26568-76. PubMed ID: 18667429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockdown NRPC2, 3, 8, NRPABC1 and NRPABC2 Affects RNAPIII Activity and Disrupts Seed Development in Arabidopsis.
    Zhao H; Qin Y; Xiao Z; Liang K; Gong D; Sun Q; Qiu F
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.