These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37995902)
1. Comparison of online and offline applications of dual-site transcranial alternating current stimulation (tACS) over the pre-supplementary motor area (preSMA) and right inferior frontal gyrus (rIFG) for improving response inhibition. Fujiyama H; Williams A; Tan J; Levin O; Hinder MR Neuropsychologia; 2023 Dec; 191():108737. PubMed ID: 37995902 [TBL] [Abstract][Full Text] [Related]
2. Offline 20 Hz transcranial alternating current stimulation over the right inferior frontal gyrus increases theta activity during a motor response inhibition task. Lyzhko E; Peter SE; Nees F; Siniatchkin M; Moliadze V Neurophysiol Clin; 2023 Jun; 53(3):102887. PubMed ID: 37355398 [TBL] [Abstract][Full Text] [Related]
3. A novel approach to modulating response inhibition: Multi-channel beta transcranial alternating current stimulation. Meng Q; Zhu Y; Yuan Y; Liu J; Ye L; Kong W; Yan C; Liang Z; Yang F; Wang K; Bu J Asian J Psychiatr; 2024 Jan; 91():103872. PubMed ID: 38159441 [TBL] [Abstract][Full Text] [Related]
4. Dual-site beta tACS over rIFG and M1 enhances response inhibition: A parallel multiple control and replication study. Meng Q; Zhu Y; Yuan Y; Ni R; Yang L; Liu J; Bu J Int J Clin Health Psychol; 2023; 23(4):100411. PubMed ID: 37731603 [TBL] [Abstract][Full Text] [Related]
5. Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision-making and response inhibition: A healthy ageing perspective. Fujiyama H; Tan J; Puri R; Hinder MR Neurobiol Aging; 2022 Jan; 109():11-21. PubMed ID: 34634749 [TBL] [Abstract][Full Text] [Related]
6. Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task. Drummond NM; Cressman EK; Carlsen AN Neuropsychologia; 2017 May; 99():360-367. PubMed ID: 28391033 [TBL] [Abstract][Full Text] [Related]
7. Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity. Swann NC; Cai W; Conner CR; Pieters TA; Claffey MP; George JS; Aron AR; Tandon N Neuroimage; 2012 Feb; 59(3):2860-70. PubMed ID: 21979383 [TBL] [Abstract][Full Text] [Related]
8. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Pozdniakov I; Vorobiova AN; Galli G; Rossi S; Feurra M Sci Rep; 2021 Feb; 11(1):3854. PubMed ID: 33594133 [TBL] [Abstract][Full Text] [Related]
9. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Cappon D; D'Ostilio K; Garraux G; Rothwell J; Bisiacchi P Brain Stimul; 2016; 9(4):518-24. PubMed ID: 27038707 [TBL] [Abstract][Full Text] [Related]
10. Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Sandrini M; Xu B; Volochayev R; Awosika O; Wang WT; Butman JA; Cohen LG Brain Stimul; 2020; 13(1):96-104. PubMed ID: 31422052 [TBL] [Abstract][Full Text] [Related]
11. Does Transcranial Alternating Current Stimulation Induce Cerebellum Plasticity? Feasibility, Safety and Efficacy of a Novel Electrophysiological Approach. Naro A; Leo A; Russo M; Cannavò A; Milardi D; Bramanti P; Calabrò RS Brain Stimul; 2016; 9(3):388-395. PubMed ID: 26946958 [TBL] [Abstract][Full Text] [Related]
12. Spike-timing-dependent plasticity can account for connectivity aftereffects of dual-site transcranial alternating current stimulation. Schwab BC; König P; Engel AK Neuroimage; 2021 Aug; 237():118179. PubMed ID: 34015486 [TBL] [Abstract][Full Text] [Related]
13. Phase-Synchronized Transcranial Alternating Current Stimulation-Induced Neural Oscillations Modulate Cortico-Cortical Signaling Efficacy. Fehér KD; Nakataki M; Morishima Y Brain Connect; 2022 Jun; 12(5):443-453. PubMed ID: 34210152 [No Abstract] [Full Text] [Related]
14. Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability. Schilberg L; Engelen T; Ten Oever S; Schuhmann T; de Gelder B; de Graaf TA; Sack AT Cortex; 2018 Jun; 103():142-152. PubMed ID: 29635161 [TBL] [Abstract][Full Text] [Related]
15. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Naro A; Bramanti A; Leo A; Manuli A; Sciarrone F; Russo M; Bramanti P; Calabrò RS Brain Struct Funct; 2017 Aug; 222(6):2891-2906. PubMed ID: 28064346 [TBL] [Abstract][Full Text] [Related]
16. The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults. Fresnoza S; Christova M; Feil T; Gallasch E; Körner C; Zimmer U; Ischebeck A Exp Brain Res; 2018 Oct; 236(10):2573-2588. PubMed ID: 29943239 [TBL] [Abstract][Full Text] [Related]
17. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Heise KF; Monteiro TS; Leunissen I; Mantini D; Swinnen SP Sci Rep; 2019 Feb; 9(1):3144. PubMed ID: 30816305 [TBL] [Abstract][Full Text] [Related]
18. Effects of low-gamma tACS on primary motor cortex in implicit motor learning. Giustiniani A; Tarantino V; Bonaventura RE; Smirni D; Turriziani P; Oliveri M Behav Brain Res; 2019 Dec; 376():112170. PubMed ID: 31442550 [TBL] [Abstract][Full Text] [Related]
19. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Tan J; Iyer KK; Tang AD; Jamil A; Martins RN; Sohrabi HR; Nitsche MA; Hinder MR; Fujiyama H Neuroimage; 2019 Jan; 185():490-512. PubMed ID: 30342977 [TBL] [Abstract][Full Text] [Related]
20. Modulation of resting-state networks following repetitive transcranial alternating current stimulation of the dorsolateral prefrontal cortex. Khan A; Mosbacher JA; Vogel SE; Binder M; Wehovz M; Moshammer A; Halverscheid S; Pustelnik K; Nitsche MA; Tong RK; Grabner RH Brain Struct Funct; 2023 Sep; 228(7):1643-1655. PubMed ID: 37436503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]