BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37996284)

  • 1. Influence of circadian phase and extended wakefulness on glucose levels during forced desynchrony.
    Broussard JL; Knud-Hansen BC; Grady S; Knauer OA; Ronda JM; Aeschbach D; Czeisler CA; Wright KP
    Sleep Health; 2024 Feb; 10(1S):S96-S102. PubMed ID: 37996284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous attentional failures reflect multiplicative interactions of chronic sleep loss with acute sleep loss and circadian misalignment.
    Aeschbach D; Cohen DA; Lockyer BJ; Chellappa SL; Klerman EB
    Sleep Health; 2024 Feb; 10(1S):S89-S95. PubMed ID: 37689503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep restriction masks the influence of the circadian process on sleep propensity.
    Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleepiness and Cognitive Performance among Younger and Older Adolescents across a 28-Hour Forced Desynchrony Protocol.
    Wu LJ; Acebo C; Seifer R; Carskadon MA
    Sleep; 2015 Dec; 38(12):1965-72. PubMed ID: 26194564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Sleep; 2011 Jul; 34(7):931-41. PubMed ID: 21731143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology.
    Phillips AJ; Czeisler CA; Klerman EB
    J Biol Rhythms; 2011 Oct; 26(5):441-53. PubMed ID: 21921298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG sleep spectra in older adults across all circadian phases during NREM sleep.
    Münch M; Silva EJ; Ronda JM; Czeisler CA; Duffy JF
    Sleep; 2010 Mar; 33(3):389-401. PubMed ID: 20337198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can a simple balance task be used to assess fitness for duty?
    Sargent C; Darwent D; Ferguson SA; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():74-9. PubMed ID: 22239936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.
    McHill AW; Hull JT; Wang W; Czeisler CA; Klerman EB
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6070-6075. PubMed ID: 29784810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
    Burke TM; Scheer FAJL; Ronda JM; Czeisler CA; Wright KP
    J Sleep Res; 2015 Aug; 24(4):364-371. PubMed ID: 25773686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness.
    Wyatt JK; Cajochen C; Ritz-De Cecco A; Czeisler CA; Dijk DJ
    Sleep; 2004 May; 27(3):374-81. PubMed ID: 15164887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of neurobehavioral performance variability under forced desynchrony: evidence of state instability.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Sleep; 2011 Jan; 34(1):57-63. PubMed ID: 21203373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trait-like vulnerability of higher-order cognition and ability to maintain wakefulness during combined sleep restriction and circadian misalignment.
    Sprecher KE; Ritchie HK; Burke TM; Depner CM; Smits AN; Dorrestein PC; Fleshner M; Knight R; Lowry CA; Turek FW; Vitaterna MH; Wright KP
    Sleep; 2019 Aug; 42(8):. PubMed ID: 31070769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep Propensity under Forced Desynchrony in a Model of Arousal State Dynamics.
    Postnova S; Lockley SW; Robinson PA
    J Biol Rhythms; 2016 Oct; 31(5):498-508. PubMed ID: 27432116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans.
    Dijk DJ; Czeisler CA
    Neurosci Lett; 1994 Jan; 166(1):63-8. PubMed ID: 8190360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morning Circadian Misalignment during Short Sleep Duration Impacts Insulin Sensitivity.
    Eckel RH; Depner CM; Perreault L; Markwald RR; Smith MR; McHill AW; Higgins J; Melanson EL; Wright KP
    Curr Biol; 2015 Nov; 25(22):3004-10. PubMed ID: 26549253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of modafinil on impairments in neurobehavioral performance and learning associated with extended wakefulness and circadian misalignment.
    Grady S; Aeschbach D; Wright KP; Czeisler CA
    Neuropsychopharmacology; 2010 Aug; 35(9):1910-20. PubMed ID: 20505660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance.
    Wright KP; Drake AL; Frey DJ; Fleshner M; Desouza CA; Gronfier C; Czeisler CA
    Brain Behav Immun; 2015 Jul; 47():24-34. PubMed ID: 25640603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms.
    Dijk DJ; Duffy JF; Riel E; Shanahan TL; Czeisler CA
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):611-27. PubMed ID: 10087357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.