These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 37996459)

  • 1. Deep learning-enhanced microscopy with extended depth-of-field.
    Zhang Y
    Light Sci Appl; 2023 Nov; 12(1):284. PubMed ID: 37996459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E2E-BPF microscope: extended depth-of-field microscopy using learning-based implementation of binary phase filter and image deconvolution.
    Seong B; Kim W; Kim Y; Hyun KA; Jung HI; Lee JS; Yoo J; Joo C
    Light Sci Appl; 2023 Nov; 12(1):269. PubMed ID: 37953314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning extended depth-of-field microscope for fast and slide-free histology.
    Jin L; Tang Y; Wu Y; Coole JB; Tan MT; Zhao X; Badaoui H; Robinson JT; Williams MD; Gillenwater AM; Richards-Kortum RR; Veeraraghavan A
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33051-33060. PubMed ID: 33318169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total variation regularized deconvolution for extended depth of field microscopy.
    Zahreddine RN; Cogswell CJ
    Appl Opt; 2015 Mar; 54(9):2244-54. PubMed ID: 25968507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks.
    Feng F; Liang S; Luo J; Chen SL
    Photoacoustics; 2022 Jun; 26():100360. PubMed ID: 35574187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Wavefront Coding for Extended Depth of Field Imaging.
    Akpinar U; Sahin E; Meem M; Menon R; Gotchev A
    IEEE Trans Image Process; 2021; 30():3307-3320. PubMed ID: 33625984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.
    Wu Y; Rivenson Y; Wang H; Luo Y; Ben-David E; Bentolila LA; Pritz C; Ozcan A
    Nat Methods; 2019 Dec; 16(12):1323-1331. PubMed ID: 31686039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier ptychographic microscopy with untrained deep neural network priors.
    Chen Q; Huang D; Chen R
    Opt Express; 2022 Oct; 30(22):39597-39612. PubMed ID: 36298907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast digital refocusing and depth of field extended Fourier ptychography microscopy.
    Zhang S; Zhou G; Zheng C; Li T; Hu Y; Hao Q
    Biomed Opt Express; 2021 Sep; 12(9):5544-5558. PubMed ID: 34692200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Physics-Inspired Deep Learning Framework for an Efficient Fourier Ptychographic Microscopy Reconstruction under Low Overlap Conditions.
    Bouchama L; Dorizzi B; Klossa J; Gottesman Y
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing synthetic refocusing to deconvolution for the extraction of neuronal calcium transients from light fields.
    Howe CL; Quicke P; Song P; Verinaz-Jadan H; Dragotti PL; Foust AJ
    Neurophotonics; 2022 Oct; 9(4):041404. PubMed ID: 35445141
    [No Abstract]   [Full Text] [Related]  

  • 13. Physics-based learning with channel attention for Fourier ptychographic microscopy.
    Zhang J; Xu T; Li J; Zhang Y; Jiang S; Chen Y; Zhang J
    J Biophotonics; 2022 Mar; 15(3):e202100296. PubMed ID: 34730877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational superposition compound eye imaging for extended depth-of-field and field-of-view.
    Nakamura T; Horisaki R; Tanida J
    Opt Express; 2012 Dec; 20(25):27482-95. PubMed ID: 23262698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airy beam light sheet microscopy boosted by deep learning deconvolution.
    Stockhausen A; Rodriguez-Gatica JE; Schweihoff J; Schwarz MK; Kubitscheck U
    Opt Express; 2023 Mar; 31(6):10918-10935. PubMed ID: 37157627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ContransGAN: Convolutional Neural Network Coupling Global Swin-Transformer Network for High-Resolution Quantitative Phase Imaging with Unpaired Data.
    Ding H; Li F; Chen X; Ma J; Nie S; Ye R; Yuan C
    Cells; 2022 Aug; 11(15):. PubMed ID: 35954239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field.
    Ben-Eliezer E; Konforti N; Milgrom B; Marom E
    Opt Express; 2008 Dec; 16(25):20540-61. PubMed ID: 19065193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learned Hückel theory: Interfacing physics and deep neural networks.
    Zubatiuk T; Nebgen B; Lubbers N; Smith JS; Zubatyuk R; Zhou G; Koh C; Barros K; Isayev O; Tretiak S
    J Chem Phys; 2021 Jun; 154(24):244108. PubMed ID: 34241371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost and simple optical system based on wavefront coding and deep learning.
    Wei S; Cheng H; Xue B; Shao X; Xi T
    Appl Opt; 2023 Aug; 62(23):6171-6179. PubMed ID: 37707086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-enhanced fluorescence microscopy via confocal physical imaging model.
    Zhang B; Sun X; Mai J; Wang W
    Opt Express; 2023 Jun; 31(12):19048-19064. PubMed ID: 37381330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.