These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37996465)

  • 1. Multi-scale measurement of stiffness in the developing ferret brain.
    Walter C; Balouchzadeh R; Garcia KE; Kroenke CD; Pathak A; Bayly PV
    Sci Rep; 2023 Nov; 13(1):20583. PubMed ID: 37996465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axons pull on the brain, but tension does not drive cortical folding.
    Xu G; Knutsen AK; Dikranian K; Kroenke CD; Bayly PV; Taber LA
    J Biomech Eng; 2010 Jul; 132(7):071013. PubMed ID: 20590291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An essential role of SVZ progenitors in cortical folding in gyrencephalic mammals.
    Toda T; Shinmyo Y; Dinh Duong TA; Masuda K; Kawasaki H
    Sci Rep; 2016 Jul; 6():29578. PubMed ID: 27403992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in the Mechanical Properties of the Developing Cerebral Cortical Proliferative Zone between Mice and Ferrets at both the Tissue and Single-Cell Levels.
    Nagasaka A; Shinoda T; Kawaue T; Suzuki M; Nagayama K; Matsumoto T; Ueno N; Kawaguchi A; Miyata T
    Front Cell Dev Biol; 2016; 4():139. PubMed ID: 27933293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis of Brain Stiffness Among Amniotes Using Glyoxal Fixation and Atomic Force Microscopy.
    Iwashita M; Nomura T; Suetsugu T; Matsuzaki F; Kojima S; Kosodo Y
    Front Cell Dev Biol; 2020; 8():574619. PubMed ID: 33043008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Migration Dynamics in the Developing Ferret Cortex.
    Gertz CC; Kriegstein AR
    J Neurosci; 2015 Oct; 35(42):14307-15. PubMed ID: 26490868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Investigations of the Development and Diseases of Cerebral Cortex Folding using Gyrencephalic Mammal Ferrets.
    Kawasaki H
    Biol Pharm Bull; 2018; 41(9):1324-1329. PubMed ID: 30175769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal variations of cortical growth during gyrogenesis in the developing ferret brain.
    Knutsen AK; Kroenke CD; Chang YV; Taber LA; Bayly PV
    Cereb Cortex; 2013 Feb; 23(2):488-98. PubMed ID: 22368085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding of the Cerebral Cortex Requires Cdk5 in Upper-Layer Neurons in Gyrencephalic Mammals.
    Shinmyo Y; Terashita Y; Dinh Duong TA; Horiike T; Kawasumi M; Hosomichi K; Tajima A; Kawasaki H
    Cell Rep; 2017 Aug; 20(9):2131-2143. PubMed ID: 28854363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gyrification of the cerebral cortex requires FGF signaling in the mammalian brain.
    Matsumoto N; Shinmyo Y; Ichikawa Y; Kawasaki H
    Elife; 2017 Nov; 6():. PubMed ID: 29132503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets].
    Kawasaki H
    Yakugaku Zasshi; 2021; 141(3):349-357. PubMed ID: 33642503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A discrete subtype of neural progenitor crucial for cortical folding in the gyrencephalic mammalian brain.
    Matsumoto N; Tanaka S; Horiike T; Shinmyo Y; Kawasaki H
    Elife; 2020 Apr; 9():. PubMed ID: 32312384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.
    Iwashita M; Kataoka N; Toida K; Kosodo Y
    Development; 2014 Oct; 141(19):3793-8. PubMed ID: 25249464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain.
    Bayly PV; Okamoto RJ; Xu G; Shi Y; Taber LA
    Phys Biol; 2013 Feb; 10(1):016005. PubMed ID: 23357794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The One-Stop Gyrification Station - Challenges and New Technologies.
    Hickmott RA; Bosakhar A; Quezada S; Barresi M; Walker DW; Ryan AL; Quigley A; Tolcos M
    Prog Neurobiol; 2021 Sep; 204():102111. PubMed ID: 34166774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of stress-dependent growth on evolution of sulcal direction and curvature in models of cortical folding.
    Balouchzadeh R; Bayly PV; Garcia KE
    Brain Multiphys; 2023; 4():. PubMed ID: 38948884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cerebral cortex size and folding by expansion of basal progenitors.
    Nonaka-Kinoshita M; Reillo I; Artegiani B; Martínez-Martínez MÁ; Nelson M; Borrell V; Calegari F
    EMBO J; 2013 Jul; 32(13):1817-28. PubMed ID: 23624932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptophysin immunohistochemistry reveals inside-out pattern of early synaptogenesis in ferret cerebral cortex.
    Voigt T; De Lima AD; Beckmann M
    J Comp Neurol; 1993 Apr; 330(1):48-64. PubMed ID: 8468403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory landscape of cerebral cortex folding.
    Singh A; Del-Valle-Anton L; de Juan Romero C; Zhang Z; Ortuño EF; Mahesh A; Espinós A; Soler R; Cárdenas A; Fernández V; Lusby R; Tiwari VK; Borrell V
    Sci Adv; 2024 Jun; 10(23):eadn1640. PubMed ID: 38838158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors.
    Reillo I; Borrell V
    Cereb Cortex; 2012 Sep; 22(9):2039-54. PubMed ID: 21988826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.