BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37996682)

  • 1. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle.
    Whitlock JM
    Results Probl Cell Differ; 2024; 71():257-279. PubMed ID: 37996682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.
    Domenighetti AA; Mathewson MA; Pichika R; Sibley LA; Zhao L; Chambers HG; Lieber RL
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C247-C257. PubMed ID: 29694232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells.
    Ambrosio R; De Stefano MA; Di Girolamo D; Salvatore D
    Mol Cell Endocrinol; 2017 Dec; 459():79-83. PubMed ID: 28630021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.
    Mitchell KJ; Pannérec A; Cadot B; Parlakian A; Besson V; Gomes ER; Marazzi G; Sassoon DA
    Nat Cell Biol; 2010 Mar; 12(3):257-66. PubMed ID: 20118923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SDF-1 and NOTCH signaling in myogenic cell differentiation: the role of miRNA10a, 425, and 5100.
    Mierzejewski B; Grabowska I; Michalska Z; Zdunczyk K; Zareba F; Irhashava A; Chrzaszcz M; Patrycy M; Streminska W; Janczyk-Ilach K; Koblowska M; Iwanicka-Nowicka R; Gromadka A; Kowalski K; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2023 Aug; 14(1):204. PubMed ID: 37582765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Satellite Cells and Myogenic Progenitors During Skeletal Muscle Regeneration.
    Dumont NA; Rudnicki MA
    Methods Mol Biol; 2017; 1560():179-188. PubMed ID: 28155153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Satellite cells, the engines of muscle repair.
    Wang YX; Rudnicki MA
    Nat Rev Mol Cell Biol; 2011 Dec; 13(2):127-33. PubMed ID: 22186952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis.
    Zammit PS
    Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.
    Shan T; Xu Z; Wu W; Liu J; Wang Y
    J Cell Physiol; 2017 Nov; 232(11):2964-2967. PubMed ID: 27943289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.
    Chaillou T; Lanner JT
    FASEB J; 2016 Dec; 30(12):3929-3941. PubMed ID: 27601440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Mitogen-Activating Protein Kinase Kinase Kinase Kinase-3 (MAP4K3) in Preterm Skeletal Muscle Satellite Cell Myogenesis and Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Regulation.
    Guo CY; Yu MX; Dai JM; Pan SN; Lu ZT; Qiu XS; Zhuang SQ
    Med Sci Monit; 2017 Jul; 23():3562-3570. PubMed ID: 28731988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells.
    Gerli MFM; Moyle LA; Benedetti S; Ferrari G; Ucuncu E; Ragazzi M; Constantinou C; Louca I; Sakai H; Ala P; De Coppi P; Tajbakhsh S; Cossu G; Tedesco FS
    Stem Cell Reports; 2019 Mar; 12(3):461-473. PubMed ID: 30745033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche.
    Kowalski K; Dos Santos M; Maire P; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2018 Sep; 9(1):258. PubMed ID: 30261919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration.
    Yamamoto M; Legendre NP; Biswas AA; Lawton A; Yamamoto S; Tajbakhsh S; Kardon G; Goldhamer DJ
    Stem Cell Reports; 2018 Mar; 10(3):956-969. PubMed ID: 29478898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function.
    Sun C; De Mello V; Mohamed A; Ortuste Quiroga HP; Garcia-Munoz A; Al Bloshi A; Tremblay AM; von Kriegsheim A; Collie-Duguid E; Vargesson N; Matallanas D; Wackerhage H; Zammit PS
    Stem Cells; 2017 Aug; 35(8):1958-1972. PubMed ID: 28589555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Notch signaling network in muscle stem cells during development, homeostasis, and disease.
    Gioftsidi S; Relaix F; Mourikis P
    Skelet Muscle; 2022 Apr; 12(1):9. PubMed ID: 35459219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ErbB3 binding protein-1 (Ebp1) controls proliferation and myogenic differentiation of muscle stem cells.
    Figeac N; Serralbo O; Marcelle C; Zammit PS
    Dev Biol; 2014 Feb; 386(1):135-51. PubMed ID: 24275324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKCε as a novel promoter of skeletal muscle differentiation and regeneration.
    Di Marcantonio D; Galli D; Carubbi C; Gobbi G; Queirolo V; Martini S; Merighi S; Vaccarezza M; Maffulli N; Sykes SM; Vitale M; Mirandola P
    Exp Cell Res; 2015 Nov; 339(1):10-9. PubMed ID: 26431586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.
    Ryall JG
    FEBS J; 2013 Sep; 280(17):4004-13. PubMed ID: 23402377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.