These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37997003)

  • 1. Low-Hysteresis and High-Toughness Hydrogels Regulated by Porous Cationic Polymers: the Effect of Counteranions.
    Xiong J; Wang X; Li L; Li Q; Zheng S; Liu Z; Li W; Yan F
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202316375. PubMed ID: 37997003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoconfined polymerization limits crack propagation in hysteresis-free gels.
    Li W; Wang X; Liu Z; Zou X; Shen Z; Liu D; Li L; Guo Y; Yan F
    Nat Mater; 2024 Jan; 23(1):131-138. PubMed ID: 37884671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable Hydrogels with Low Hysteresis and High Fracture Toughness for Flexible Electronics.
    Guo X; Li J; Wang J; Huang L; Cheng G; Zhang Q; Zhu H; Zhang M; Zhu S
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100716. PubMed ID: 34962018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High strength and self-healable gelatin/polyacrylamide double network hydrogels.
    Yan X; Chen Q; Zhu L; Chen H; Wei D; Chen F; Tang Z; Yang J; Zheng J
    J Mater Chem B; 2017 Oct; 5(37):7683-7691. PubMed ID: 32264369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Modification of Super Arborized Silica for Flexible and Wearable Ultrafast-Response Strain Sensors with Low Hysteresis.
    Han S; Tan H; Wei J; Yuan H; Li S; Yang P; Mi H; Liu C; Shen C
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301713. PubMed ID: 37381645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch-Based Ion-Conductive Organo-Hydrogels with Self-Healing, Anti-Freezing, and High Mechanical Properties toward Strain Sensors.
    Huang B; Zhu L; Wei S; Li Y; Nie Y; Zhao W
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200890. PubMed ID: 36594427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers.
    Lei H; Dong L; Li Y; Zhang J; Chen H; Wu J; Zhang Y; Fan Q; Xue B; Qin M; Chen B; Cao Y; Wang W
    Nat Commun; 2020 Aug; 11(1):4032. PubMed ID: 32788575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness.
    Xu X; He C; Luo F; Wang H; Peng Z
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteresis-Free Nanoparticle-Reinforced Hydrogels.
    Meng X; Qiao Y; Do C; Bras W; He C; Ke Y; Russell TP; Qiu D
    Adv Mater; 2022 Feb; 34(7):e2108243. PubMed ID: 34837255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals boosted hydrophobic association in dual network polymer hydrogels as advanced flexible strain sensor for human motion detection.
    Khan M; Shah LA; Rahman TU; Yoo HM; Ye D; Vacharasin J
    J Mech Behav Biomed Mater; 2023 Feb; 138():105610. PubMed ID: 36509014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement.
    Lei K; Chen M; Wang X; Gao J; Zhang J; Li G; Bao J; Li Z; Li J
    J Mater Chem B; 2022 Nov; 10(44):9188-9201. PubMed ID: 36314575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers.
    Sun D; Gao Y; Zhou Y; Yang M; Hu J; Lu T; Wang T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49389-49397. PubMed ID: 36273343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamically bonded, tough, and conductive MXene@oxidized sodium alginate: chitosan based multi-networked elastomeric hydrogels for physical motion detection.
    Shekh MI; Zhu G; Xiong W; Wu W; Stadler FJ; Patel D; Zhu C
    Int J Biol Macromol; 2023 Jan; 224():604-620. PubMed ID: 36280171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions affecting the mechanical properties of macromolecular microsphere composite hydrogels.
    Jiang F; Huang T; He C; Brown HR; Wang H
    J Phys Chem B; 2013 Oct; 117(43):13679-87. PubMed ID: 24093971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Conductive Hydrogels with Ultrafast Self-Recovery and Nearly Zero Response Hysteresis for Epidermal Sensors.
    Xu X; He C; Luo F; Wang H; Peng Z
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors.
    Wang R; Chi W; Wan F; Wei J; Ping H; Zou Z; Xie J; Wang W; Fu Z
    ACS Appl Mater Interfaces; 2022 May; 14(18):21278-21286. PubMed ID: 35471924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Hydrogels with Extremely High Stiffness and Toughness.
    Li J; Illeperuma WRK; Suo Z; Vlassak JJ
    ACS Macro Lett; 2014 Jun; 3(6):520-523. PubMed ID: 35590722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resilient and Tough Conductive Polymer Hydrogel for a Low-Hysteresis Strain Sensor.
    Cao C; Huang T; Li Y
    Macromol Rapid Commun; 2024 Jan; 45(2):e2300467. PubMed ID: 37863475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stretchable and tough hydrogels.
    Sun JY; Zhao X; Illeperuma WR; Chaudhuri O; Oh KH; Mooney DJ; Vlassak JJ; Suo Z
    Nature; 2012 Sep; 489(7414):133-6. PubMed ID: 22955625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable and Highly Resilient Polymer-Clay Nanocomposite Hydrogels with Low Hysteresis.
    Su X; Mahalingam S; Edirisinghe M; Chen B
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22223-22234. PubMed ID: 28609609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.