BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37997505)

  • 21. CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.).
    Khan I; Khan S; Zhang Y; Zhou J; Akhoundian M; Jan SA
    Mol Biol Rep; 2021 Apr; 48(4):3605-3615. PubMed ID: 33950408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Sc
    Ma G; Kuang Y; Lu Z; Li X; Xu Z; Ren B; Zhou X; Zhou H
    J Integr Plant Biol; 2021 Sep; 63(9):1606-1610. PubMed ID: 34427973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single Transcript Unit CRISPR 2.0 Systems for Genome Editing in Rice.
    Tang X; Qi Y; Zhang Y
    Methods Mol Biol; 2021; 2238():193-204. PubMed ID: 33471332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome editing in rice using CRISPR/Cas12i3.
    Lv P; Su F; Chen F; Yan C; Xia D; Sun H; Li S; Duan Z; Ma C; Zhang H; Wang M; Niu X; Zhu JK; Zhang J
    Plant Biotechnol J; 2024 Feb; 22(2):379-385. PubMed ID: 37822083
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9.
    Li Q; Zhang D; Chen M; Liang W; Wei J; Qi Y; Yuan Z
    J Genet Genomics; 2016 Jun; 43(6):415-9. PubMed ID: 27317309
    [No Abstract]   [Full Text] [Related]  

  • 26. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precision genome engineering in rice using prime editing system.
    Hua K; Jiang Y; Tao X; Zhu JK
    Plant Biotechnol J; 2020 Nov; 18(11):2167-2169. PubMed ID: 32372479
    [No Abstract]   [Full Text] [Related]  

  • 28. Enhanced genome editing in rice using single transcript unit CRISPR-LbCpf1 systems.
    Xu R; Qin R; Li H; Li J; Yang J; Wei P
    Plant Biotechnol J; 2019 Mar; 17(3):553-555. PubMed ID: 30367555
    [No Abstract]   [Full Text] [Related]  

  • 29. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes.
    Tao H; Shi X; He F; Wang D; Xiao N; Fang H; Wang R; Zhang F; Wang M; Li A; Liu X; Wang GL; Ning Y
    J Integr Plant Biol; 2021 Sep; 63(9):1639-1648. PubMed ID: 34170614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice.
    Zeng D; Liu T; Ma X; Wang B; Zheng Z; Zhang Y; Xie X; Yang B; Zhao Z; Zhu Q; Liu YG
    Plant Biotechnol J; 2020 Dec; 18(12):2385-2387. PubMed ID: 32485068
    [No Abstract]   [Full Text] [Related]  

  • 31. CRISPR/Cas9-Based Genome Editing Using Rice Zygotes.
    Toda E; Okamoto T
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20111. PubMed ID: 32515907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broad-spectrum resistance to bacterial blight in rice using genome editing.
    Oliva R; Ji C; Atienza-Grande G; Huguet-Tapia JC; Perez-Quintero A; Li T; Eom JS; Li C; Nguyen H; Liu B; Auguy F; Sciallano C; Luu VT; Dossa GS; Cunnac S; Schmidt SM; Slamet-Loedin IH; Vera Cruz C; Szurek B; Frommer WB; White FF; Yang B
    Nat Biotechnol; 2019 Nov; 37(11):1344-1350. PubMed ID: 31659337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated targeted T-DNA integration in rice.
    Lee K; Eggenberger AL; Banakar R; McCaw ME; Zhu H; Main M; Kang M; Gelvin SB; Wang K
    Plant Mol Biol; 2019 Mar; 99(4-5):317-328. PubMed ID: 30645710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing.
    Tang X; Ren Q; Yang L; Bao Y; Zhong Z; He Y; Liu S; Qi C; Liu B; Wang Y; Sretenovic S; Zhang Y; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2019 Jul; 17(7):1431-1445. PubMed ID: 30582653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice.
    Farhat S; Jain N; Singh N; Sreevathsa R; Dash PK; Rai R; Yadav S; Kumar P; Sarkar AK; Jain A; Singh NK; Rai V
    Semin Cell Dev Biol; 2019 Dec; 96():91-99. PubMed ID: 31075379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System.
    Li J; Sun Y; Du J; Zhao Y; Xia L
    Mol Plant; 2017 Mar; 10(3):526-529. PubMed ID: 27940306
    [No Abstract]   [Full Text] [Related]  

  • 37. Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants.
    He Y; Zhu M; Wang L; Wu J; Wang Q; Wang R; Zhao Y
    Mol Plant; 2018 Sep; 11(9):1210-1213. PubMed ID: 29857174
    [No Abstract]   [Full Text] [Related]  

  • 38. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice.
    Moin M; Bakshi A; Madhav MS; Kirti PB
    Brief Funct Genomics; 2018 Sep; 17(5):339-351. PubMed ID: 29579147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR-Cas9-Mediated Genome Editing of Rice Towards Better Grain Quality.
    Bandyopadhyay A; Yin X; Biswal A; Coe R; Quick WP
    Methods Mol Biol; 2019; 1892():311-336. PubMed ID: 30397814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PAM-Less CRISPR-SpRY Genome Editing in Plants.
    Sretenovic S; Tang X; Ren Q; Zhang Y; Qi Y
    Methods Mol Biol; 2023; 2653():3-19. PubMed ID: 36995616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.