These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37998242)
1. Fault Diagnosis of Rotating Machinery Using Kernel Neighborhood Preserving Embedding and a Modified Sparse Bayesian Classification Model. Lu L; Wang W; Kong D; Zhu J; Chen D Entropy (Basel); 2023 Nov; 25(11):. PubMed ID: 37998242 [TBL] [Abstract][Full Text] [Related]
2. A hybrid intelligent multi-fault detection method for rotating machinery based on RSGWPT, KPCA and Twin SVM. Liu Z; Guo W; Hu J; Ma W ISA Trans; 2017 Jan; 66():249-261. PubMed ID: 27837907 [TBL] [Abstract][Full Text] [Related]
3. Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine. Chen Y; Zhang T; Zhao W; Luo Z; Lin H Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635428 [TBL] [Abstract][Full Text] [Related]
4. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing. Lu C; Wang Y; Ragulskis M; Cheng Y PLoS One; 2016; 11(10):e0164111. PubMed ID: 27711246 [TBL] [Abstract][Full Text] [Related]
5. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Gong W; Chen H; Zhang Z; Zhang M; Wang R; Guan C; Wang Q Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970672 [TBL] [Abstract][Full Text] [Related]
6. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Li C; Sánchez RV; Zurita G; Cerrada M; Cabrera D Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322273 [TBL] [Abstract][Full Text] [Related]
7. Multi-Sensor Data Fusion Using a Relevance Vector Machine Based on an Ant Colony for Gearbox Fault Detection. Liu Z; Guo W; Tang Z; Chen Y Sensors (Basel); 2015 Aug; 15(9):21857-75. PubMed ID: 26334280 [TBL] [Abstract][Full Text] [Related]
8. Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis. Song X; Wei W; Zhou J; Ji G; Hussain G; Xiao M; Geng G Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299863 [TBL] [Abstract][Full Text] [Related]
9. Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. Pang S; Yang X; Zhang X; Lin X ISA Trans; 2020 Mar; 98():320-337. PubMed ID: 31492472 [TBL] [Abstract][Full Text] [Related]
10. A Novel Method for Fault Diagnosis of Rotating Machinery. Tang M; Liao Y; Luo F; Li X Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626565 [TBL] [Abstract][Full Text] [Related]
11. A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery. Zhou F; Hu P; Yang S; Wen C Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340412 [TBL] [Abstract][Full Text] [Related]
12. Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network. Li H; Huang J; Ji S Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052295 [TBL] [Abstract][Full Text] [Related]
13. Deep residual learning-based fault diagnosis method for rotating machinery. Zhang W; Li X; Ding Q ISA Trans; 2019 Dec; 95():295-305. PubMed ID: 30598323 [TBL] [Abstract][Full Text] [Related]
14. Feature Space Transformation for Fault Diagnosis of Rotating Machinery under Different Working Conditions. Jang GB; Cho SB Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670547 [TBL] [Abstract][Full Text] [Related]
15. A Novel Image-Based Diagnosis Method Using Improved DCGAN for Rotating Machinery. Gao Y; Piltan F; Kim JM Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236633 [TBL] [Abstract][Full Text] [Related]
16. Intelligent Fault Diagnosis Method for Rotating Machinery Based on Recurrence Binary Plot and DSD-CNN. Shi Y; Wang H; Sun W; Bai R Entropy (Basel); 2024 Aug; 26(8):. PubMed ID: 39202145 [TBL] [Abstract][Full Text] [Related]
17. Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks. Li H; Huang J; Yang X; Luo J; Zhang L; Pang Y Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286622 [TBL] [Abstract][Full Text] [Related]
18. Research on rolling bearing fault diagnosis based on multi-dimensional feature extraction and evidence fusion theory. Li J; Ying Y; Ren Y; Xu S; Bi D; Chen X; Xu Y R Soc Open Sci; 2019 Feb; 6(2):181488. PubMed ID: 30891276 [TBL] [Abstract][Full Text] [Related]
19. Supervised Manifold Learning Based on Multi-Feature Information Discriminative Fusion within an Adaptive Nearest Neighbor Strategy Applied to Rolling Bearing Fault Diagnosis. Wang H; Yao L; Wang H; Liu Y; Li Z; Wang D; Hu R; Tao L Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139669 [TBL] [Abstract][Full Text] [Related]
20. A periodic-modulation-oriented noise resistant correlation method for industrial fault diagnostics of rotating machinery under the circumstances of limited system signal availability. Hou Y; Wu P; Wu D ISA Trans; 2024 Aug; 151():258-284. PubMed ID: 38851927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]