BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37998258)

  • 1. Feeling the Heat. Mapping the Epigenetic Modifications of Histone during Burn Wound Healing.
    Rolim LSA; Nascente PDS; Castilho RM; Squarize CH
    J Burn Care Res; 2024 Mar; 45(2):499-507. PubMed ID: 37998258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin wound healing triggers epigenetic modifications of histone H4.
    Nascimento-Filho CHV; Silveira EJD; Goloni-Bertollo EM; de Souza LB; Squarize CH; Castilho RM
    J Transl Med; 2020 Mar; 18(1):138. PubMed ID: 32216808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rhythms of histones in regeneration: The epigenetic modifications determined by clock genes.
    da Silveira EJD; Barros CCDS; Bottino MC; Castilho RM; Squarize C
    Exp Dermatol; 2024 Jan; 33(1):e15005. PubMed ID: 38284199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents.
    Godino A; Jayanthi S; Cadet JL
    Epigenetics; 2015; 10(7):574-80. PubMed ID: 26023847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of epigenetic regulation in wound healing: Implications for the future of wound care.
    Lewis CJ; Stevenson A; Fear MW; Wood FM
    Wound Repair Regen; 2020 Nov; 28(6):710-718. PubMed ID: 32515036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Burn Injury Increases Pulmonary Histone Deacetylase 1 and Reduces Histone Acetylation.
    Curtis BJ; Shults JA; Ramirez L; Kovacs EJ
    J Burn Care Res; 2016; 37(5):321-7. PubMed ID: 26629657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model.
    Foubert P; Liu M; Anderson S; Rajoria R; Gutierrez D; Zafra D; Tenenhaus M; Fraser JK
    Burns; 2018 Sep; 44(6):1531-1542. PubMed ID: 29958745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel burn device for rapid, reproducible burn wound generation.
    Kim JY; Dunham DM; Supp DM; Sen CK; Powell HM
    Burns; 2016 Mar; 42(2):384-91. PubMed ID: 26803369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burn healing is dependent on burn site: a quantitative analysis from a porcine burn model.
    Wang XQ; Liu PY; Kempf M; Cuttle L; Chang AH; Wong M; Kravchuk O; Mill J; Kimble RM
    Burns; 2009 Mar; 35(2):264-9. PubMed ID: 18845398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model.
    Shen YI; Song HG; Papa A; Burke J; Volk SW; Gerecht S
    J Invest Dermatol; 2015 Oct; 135(10):2519-2529. PubMed ID: 26358387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory.
    Tetievsky A; Horowitz M
    J Appl Physiol (1985); 2010 Nov; 109(5):1552-61. PubMed ID: 20813976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pattern of histone H3 epigenetic posttranslational modifications is regulated by the VRK1 chromatin kinase.
    Monte-Serrano E; Morejón-García P; Campillo-Marcos I; Campos-Díaz A; Navarro-Carrasco E; Lazo PA
    Epigenetics Chromatin; 2023 May; 16(1):18. PubMed ID: 37179361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of cellular functions in wound healing.
    Pastar I; Marjanovic J; Stone RC; Chen V; Burgess JL; Mervis JS; Tomic-Canic M
    Exp Dermatol; 2021 Aug; 30(8):1073-1089. PubMed ID: 33690920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds.
    Ramakrishnan R; Chouhan D; Vijayakumar Sreelatha H; Arumugam S; Mandal BB; Krishnan LK
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3856-3870. PubMed ID: 35969223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model.
    Zhou X; Ning K; Ling B; Chen X; Cheng H; Lu B; Gao Z; Xu J
    Stem Cells Dev; 2019 Nov; 28(21):1463-1472. PubMed ID: 31530229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of histone H4 modifications as revealed by a panel of specific monoclonal antibodies.
    Hayashi-Takanaka Y; Maehara K; Harada A; Umehara T; Yokoyama S; Obuse C; Ohkawa Y; Nozaki N; Kimura H
    Chromosome Res; 2015 Dec; 23(4):753-66. PubMed ID: 26343042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causes and consequences of epigenetic regulation in wound healing.
    Ti D; Li M; Fu X; Han W
    Wound Repair Regen; 2014; 22(3):305-12. PubMed ID: 24844330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
    Lee JY; Jung SN; Kwon H
    Wound Repair Regen; 2015; 23(1):124-31. PubMed ID: 25421614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.