These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 37998400)
1. Fluid and Bubble Flow Detach Adherent Cancer Cells to Form Spheroids on a Random Positioning Machine. Cortés-Sánchez JL; Melnik D; Sandt V; Kahlert S; Marchal S; Johnson IRD; Calvaruso M; Liemersdorf C; Wuest SL; Grimm D; Krüger M Cells; 2023 Nov; 12(22):. PubMed ID: 37998400 [TBL] [Abstract][Full Text] [Related]
2. Spheroid formation of human thyroid cancer cells under simulated microgravity: a possible role of CTGF and CAV1. Warnke E; Pietsch J; Wehland M; Bauer J; Infanger M; Görög M; Hemmersbach R; Braun M; Ma X; Sahana J; Grimm D Cell Commun Signal; 2014 May; 12():32. PubMed ID: 24885050 [TBL] [Abstract][Full Text] [Related]
3. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674 [TBL] [Abstract][Full Text] [Related]
4. Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines. Wuest SL; Stern P; Casartelli E; Egli M PLoS One; 2017; 12(1):e0170826. PubMed ID: 28135286 [TBL] [Abstract][Full Text] [Related]
5. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Wuest SL; Richard S; Kopp S; Grimm D; Egli M Biomed Res Int; 2015; 2015():971474. PubMed ID: 25649075 [TBL] [Abstract][Full Text] [Related]
6. Simulating microgravity using a random positioning machine for inducing cellular responses to mechanotransduction in human osteoblasts. Wubshet NH; Arreguin-Martinez E; Nail M; Annamalai H; Koerner R; Rousseva M; Tom T; Gillespie RB; Liu AP Rev Sci Instrum; 2021 Nov; 92(11):114101. PubMed ID: 34852501 [TBL] [Abstract][Full Text] [Related]
7. Clinorotation inhibits myotube formation by fluid motion, not by simulated microgravity. Mansour J; Berwanger C; Jung M; Eichinger L; Fabry B; Clemen CS Eur J Cell Biol; 2023 Jun; 102(2):151330. PubMed ID: 37290222 [TBL] [Abstract][Full Text] [Related]
9. Identification of proteins involved in inhibition of spheroid formation under microgravity. Riwaldt S; Pietsch J; Sickmann A; Bauer J; Braun M; Segerer J; Schwarzwälder A; Aleshcheva G; Corydon TJ; Infanger M; Grimm D Proteomics; 2015 Sep; 15(17):2945-52. PubMed ID: 25930030 [TBL] [Abstract][Full Text] [Related]
10. Common Effects on Cancer Cells Exerted by a Random Positioning Machine and a 2D Clinostat. Svejgaard B; Wehland M; Ma X; Kopp S; Sahana J; Warnke E; Aleshcheva G; Hemmersbach R; Hauslage J; Grosse J; Bauer J; Corydon TJ; Islam T; Infanger M; Grimm D PLoS One; 2015; 10(8):e0135157. PubMed ID: 26274317 [TBL] [Abstract][Full Text] [Related]
11. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037 [TBL] [Abstract][Full Text] [Related]
12. Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level. Krüger M; Pietsch J; Bauer J; Kopp S; Carvalho DTO; Baatout S; Moreels M; Melnik D; Wehland M; Egli M; Jayashree S; Kobberø SD; Corydon TJ; Nebuloni S; Gass S; Evert M; Infanger M; Grimm D Cell Physiol Biochem; 2019; 52(5):1039-1060. PubMed ID: 30977987 [TBL] [Abstract][Full Text] [Related]
13. The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Ulbrich C; Wehland M; Pietsch J; Aleshcheva G; Wise P; van Loon J; Magnusson N; Infanger M; Grosse J; Eilles C; Sundaresan A; Grimm D Biomed Res Int; 2014; 2014():928507. PubMed ID: 25110709 [TBL] [Abstract][Full Text] [Related]
14. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach. Riwaldt S; Bauer J; Wehland M; Slumstrup L; Kopp S; Warnke E; Dittrich A; Magnusson NE; Pietsch J; Corydon TJ; Infanger M; Grimm D Int J Mol Sci; 2016 Apr; 17(4):528. PubMed ID: 27070589 [TBL] [Abstract][Full Text] [Related]
15. Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Cazzaniga A; Ille F; Wuest S; Haack C; Koller A; Giger-Lange C; Zocchi M; Egli M; Castiglioni S; Maier JA Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255352 [TBL] [Abstract][Full Text] [Related]
16. Apoptosis Induction and Alteration of Cell Adherence in Human Lung Cancer Cells under Simulated Microgravity. Dietz C; Infanger M; Romswinkel A; Strube F; Kraus A Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31340547 [TBL] [Abstract][Full Text] [Related]
17. Investigating alterations in the cellular envelope of Staphylococcus aureus in simulated microgravity using a random positioning machine. Singh S; Vidyasagar PB; Kulkarni GR Life Sci Space Res (Amst); 2021 Aug; 30():1-8. PubMed ID: 34281660 [TBL] [Abstract][Full Text] [Related]
18. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. Grosse J; Wehland M; Pietsch J; Schulz H; Saar K; Hübner N; Eilles C; Bauer J; Abou-El-Ardat K; Baatout S; Ma X; Infanger M; Hemmersbach R; Grimm D FASEB J; 2012 Dec; 26(12):5124-40. PubMed ID: 22964303 [TBL] [Abstract][Full Text] [Related]
19. Short-term effects of simulated microgravity on morphology and gene expression in human breast cancer cells. Strube F; Infanger M; Dietz C; Romswinkel A; Kraus A Physiol Int; 2019 Dec; 106(4):311-322. PubMed ID: 31896265 [TBL] [Abstract][Full Text] [Related]
20. Proteome Analysis of Human Follicular Thyroid Cancer Cells Exposed to the Random Positioning Machine. Bauer J; Kopp S; Schlagberger EM; Grosse J; Sahana J; Riwaldt S; Wehland M; Luetzenberg R; Infanger M; Grimm D Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28273809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]