These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37998913)

  • 1. Nano-Silicon Triggers Rapid Transcriptomic Reprogramming and Biochemical Defenses in
    Zhang Q; Wang J; Wang J; Liu M; Ma X; Bai Y; Chen Q; Sheng S; Wang F
    J Fungi (Basel); 2023 Nov; 9(11):. PubMed ID: 37998913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L.
    Xie L; Jian H; Dai H; Yang Y; Liu Y; Wei L; Tan M; Li J; Liu L
    BMC Plant Biol; 2023 Oct; 23(1):479. PubMed ID: 37807039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus.
    Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y
    Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin Composition and Timing of Cell Wall Lignification Are Involved in
    Höch K; Koopmann B; von Tiedemann A
    Phytopathology; 2021 Aug; 111(8):1438-1448. PubMed ID: 33386067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of
    Liu D; Wu J; Lin L; Li P; Li S; Wang Y; Li J; Sun Q; Liang J; Wang Y
    Front Plant Sci; 2021; 12():732733. PubMed ID: 34630482
    [No Abstract]   [Full Text] [Related]  

  • 7. Transcriptome Analysis Reveals the Complex Molecular Mechanisms of
    Xu B; Gong X; Chen S; Hu M; Zhang J; Peng Q
    Front Plant Sci; 2021; 12():716935. PubMed ID: 34691098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis.
    Teng Z; Yu Y; Zhu Z; Hong SB; Yang B; Zang Y
    J Proteomics; 2021 Jul; 243():104264. PubMed ID: 33992838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.
    Uloth MB; Clode PL; You MP; Barbetti MJ
    Ann Bot; 2016 Jan; 117(1):79-95. PubMed ID: 26420204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Inheritance of Sclerotinia Stem Rot Resistance in
    Khan MA; Cowling W; Banga SS; You MP; Tyagi V; Bharti B; Barbetti MJ
    Plant Dis; 2022 Jan; 106(1):127-136. PubMed ID: 34340556
    [No Abstract]   [Full Text] [Related]  

  • 11. The Sclerotinia sclerotiorum-inducible promoter pBnGH17D7 in Brassica napus: isolation, characterization, and application in host-induced gene silencing.
    Lin L; Fan J; Li P; Liu D; Ren S; Lin K; Fang Y; Lin C; Wang Y; Wu J
    J Exp Bot; 2022 Nov; 73(19):6663-6677. PubMed ID: 35927220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Tissue-Specific Defense Responses to
    Liu J; Zuo R; He Y; Zhou C; Yang L; Gill RA; Bai Z; Zhang X; Liu Y; Cheng X; Huang J
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35956479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus.
    Cao Y; Yan X; Ran S; Ralph J; Smith RA; Chen X; Qu C; Li J; Liu L
    Plant Cell Environ; 2022 Jan; 45(1):248-261. PubMed ID: 34697825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of brassica napus infected with Sclerotinia sclerotiorum.
    Garg H; Li H; Sivasithamparam K; Barbetti MJ
    PLoS One; 2013; 8(6):e65205. PubMed ID: 23776450
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Hu H; Tang Y; Wu J; Chen F; Yang Y; Pan X; Dong X; Jin X; Liu S; Du X
    Front Plant Sci; 2021; 12():663536. PubMed ID: 34489988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Characterization of the
    Zuo R; Xie M; Gao F; Sumbal W; Cheng X; Liu Y; Bai Z; Liu S
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Structures and Evolution Analysis of
    Wang L; Liu F; Ju L; Xue B; Wang Y; Wang D; Hou D
    Front Plant Sci; 2022; 13():854034. PubMed ID: 35463405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.
    Wei L; Jian H; Lu K; Filardo F; Yin N; Liu L; Qu C; Li W; Du H; Li J
    Plant Biotechnol J; 2016 Jun; 14(6):1368-80. PubMed ID: 26563848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms.
    Wang Z; Wan L; Xin Q; Chen Y; Zhang X; Dong F; Hong D; Yang G
    J Exp Bot; 2018 May; 69(12):3141-3155. PubMed ID: 29648614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.