BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37999176)

  • 1. Remote Sensing Imagery Data Analysis Using Marine Predators Algorithm with Deep Learning for Food Crop Classification.
    Almasoud AS; Mengash HA; Saeed MK; Alotaibi FA; Othman KM; Mahmud A
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification.
    Nadana Ravishankar T; Ramprasath M; Daniel A; Selvarajan S; Subbiah P; Balusamy B
    Sci Rep; 2023 Dec; 13(1):23041. PubMed ID: 38155207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Estimation of Crop Yield Using Artificial Intelligence and Remote Sensing Technologies.
    Ilyas QM; Ahmad M; Mehmood A
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region.
    Sun C; Bian Y; Zhou T; Pan J
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods.
    Erdanaev E; Kappas M; Wyss D
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and classification of patch-based land use and land cover dataset in diverse Indian landscapes: a comparative study of machine learning and deep learning models.
    Rengma NS; Yadav M
    Environ Monit Assess; 2024 May; 196(6):568. PubMed ID: 38775887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel metaheuristics with adaptive neuro-fuzzy inference system for decision making on autonomous unmanned aerial vehicle systems.
    Ragab M; Ashary EB; Aljedaibi WH; Alzahrani IR; Kumar A; Gupta D; Mansour RF
    ISA Trans; 2023 Jan; 132():16-23. PubMed ID: 35523604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning.
    Sun C; Feng L; Zhang Z; Ma Y; Crosby T; Naber M; Wang Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENVINet5 deep learning change detection framework for the estimation of agriculture variations during 2012-2023 with Landsat series data.
    Singh G; Dahiya N; Sood V; Singh S; Sharma A
    Environ Monit Assess; 2024 Feb; 196(3):233. PubMed ID: 38311668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms.
    Iqbal N; Mumtaz R; Shafi U; Zaidi SMH
    PeerJ Comput Sci; 2021; 7():e536. PubMed ID: 34141878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of Antarctica's Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI.
    Raniga D; Amarasingam N; Sandino J; Doshi A; Barthelemy J; Randall K; Robinson SA; Gonzalez F; Bollard B
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Based Classification for Crop-Type Mapping Using the Fusion of High-Resolution Satellite Imagery in a Semiarid Area.
    Moumni A; Lahrouni A
    Scientifica (Cairo); 2021; 2021():8810279. PubMed ID: 33968461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using unmanned aerial systems and deep learning for agriculture mapping in Dubai.
    El Hoummaidi L; Larabi A; Alam K
    Heliyon; 2021 Oct; 7(10):e08154. PubMed ID: 34703924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.