These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 37999187)
41. Biocompatible porous titanium scaffolds produced using a novel space holder technique. Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558 [TBL] [Abstract][Full Text] [Related]
42. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Wang H; Su K; Su L; Liang P; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974 [TBL] [Abstract][Full Text] [Related]
43. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079 [TBL] [Abstract][Full Text] [Related]
44. Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. Dziaduszewska M; Zieliński A Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546358 [TBL] [Abstract][Full Text] [Related]
45. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Palmquist A; Jolic M; Hryha E; Shah FA Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890 [TBL] [Abstract][Full Text] [Related]
46. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
47. A Further Analysis on Ti6Al4V Lattice Structures Manufactured by Selective Laser Melting. Maietta S; Gloria A; Improta G; Richetta M; De Santis R; Martorelli M J Healthc Eng; 2019; 2019():3212594. PubMed ID: 31662833 [TBL] [Abstract][Full Text] [Related]
48. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Ahmadi SM; Campoli G; Amin Yavari S; Sajadi B; Wauthle R; Schrooten J; Weinans H; Zadpoor AA J Mech Behav Biomed Mater; 2014 Jun; 34():106-15. PubMed ID: 24566381 [TBL] [Abstract][Full Text] [Related]
49. Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. Ciliveri S; Bandyopadhyay A J Mech Behav Biomed Mater; 2022 Feb; 126():105023. PubMed ID: 34999490 [TBL] [Abstract][Full Text] [Related]
50. High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Kelly CN; Wang T; Crowley J; Wills D; Pelletier MH; Westrick ER; Adams SB; Gall K; Walsh WR Biomaterials; 2021 Dec; 279():121206. PubMed ID: 34715639 [TBL] [Abstract][Full Text] [Related]
51. Selective Laser Melting of Ti6Al4V sub-millimetric cellular structures: Prediction of dimensional deviations and mechanical performance. Bartolomeu F; Costa MM; Alves N; Miranda G; Silva FS J Mech Behav Biomed Mater; 2021 Jan; 113():104123. PubMed ID: 33032011 [TBL] [Abstract][Full Text] [Related]
52. Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective. Mani N; Sola A; Trinchi A; Fox K Biointerphases; 2020 Dec; 15(6):068501. PubMed ID: 33302629 [TBL] [Abstract][Full Text] [Related]
53. Evolution from Bioinert to Bioresorbable: In Vivo Comparative Study of Additively Manufactured Metal Bone Scaffolds. Zhou J; Georgas E; Su Y; Zhou J; Kröger N; Benn F; Kopp A; Qin YX; Zhu D Adv Sci (Weinh); 2023 Sep; 10(26):e2302702. PubMed ID: 37424385 [TBL] [Abstract][Full Text] [Related]
54. Preparation and mechanical properties analysis of porous structure for bone tissue engineering. Cui J; Yi Y; Zhang J; Chai L; Jin H Biomed Mater Eng; 2022; 33(6):465-476. PubMed ID: 35662101 [TBL] [Abstract][Full Text] [Related]
55. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: Topographical, mechanical, and biological characterization. Caravaggi P; Liverani E; Leardini A; Fortunato A; Belvedere C; Baruffaldi F; Fini M; Parrilli A; Mattioli-Belmonte M; Tomesani L; Pagani S J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2343-2353. PubMed ID: 30689288 [TBL] [Abstract][Full Text] [Related]
56. Fatigue crack propagation in additively manufactured porous biomaterials. Hedayati R; Amin Yavari S; Zadpoor AA Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550 [TBL] [Abstract][Full Text] [Related]
57. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. Zhao D; Huang Y; Ao Y; Han C; Wang Q; Li Y; Liu J; Wei Q; Zhang Z J Mech Behav Biomed Mater; 2018 Dec; 88():478-487. PubMed ID: 30223211 [TBL] [Abstract][Full Text] [Related]
58. A Review on Design and Mechanical Properties of Additively Manufactured NiTi Implants for Orthopedic Applications. Zhang Y; Attarilar S; Wang L; Lu W; Yang J; Fu Y Int J Bioprint; 2021; 7(2):340. PubMed ID: 33997434 [TBL] [Abstract][Full Text] [Related]
59. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. Li Y; Yang W; Li X; Zhang X; Wang C; Meng X; Pei Y; Fan X; Lan P; Wang C; Li X; Guo Z ACS Appl Mater Interfaces; 2015 Mar; 7(10):5715-24. PubMed ID: 25711714 [TBL] [Abstract][Full Text] [Related]
60. Fabrication of customized Ti6AI4V heterogeneous scaffolds with selective laser melting: Optimization of the architecture for orthopedic implant applications. Pei X; Wu L; Lei H; Zhou C; Fan H; Li Z; Zhang B; Sun H; Gui X; Jiang Q; Fan Y; Zhang X Acta Biomater; 2021 May; 126():485-495. PubMed ID: 33766797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]