These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37999190)

  • 1. A Dual-Layer Weight-Leader-Vicsek Model for Multi-AGV Path Planning in Warehouse.
    Lin S; Liu A; Wang J
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Path Planning Capabilities of Automated Guided Vehicles in Dynamic Environments: Multi-Objective PSO and Dynamic-Window Approach.
    Dao TK; Ngo TG; Pan JS; Nguyen TT; Nguyen TT
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Optimization Path Planning Method for AGV Based on KGWO.
    Guo Z; Xia Y; Li J; Liu J; Xu K
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmanned Surface Vehicle Collision Avoidance Path Planning in Restricted Waters Using Multi-Objective Optimisation Complying with COLREGs.
    Gu Y; Rong Z; Tong H; Wang J; Si Y; Yang S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi UAV Coverage Path Planning in Urban Environments.
    Muñoz J; López B; Quevedo F; Monje CA; Garrido S; Moreno LE
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LF-ACO: an effective formation path planning for multi-mobile robot.
    Yang L; Fu L; Li P; Mao J; Guo N; Du L
    Math Biosci Eng; 2022 Jan; 19(1):225-252. PubMed ID: 34902989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA.
    Zhou Z; Geng C; Qi B; Meng A; Xiao J
    Math Biosci Eng; 2023 Oct; 20(11):19152-19173. PubMed ID: 38052594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA.
    Xiao J; Yu X; Sun K; Zhou Z; Zhou G
    Math Biosci Eng; 2022 Aug; 19(12):12532-12557. PubMed ID: 36654010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-efficient path planning for a multi-load automated guided vehicle executing multiple transport tasks in a manufacturing workshop environment.
    Zhang Z; Wu L; Zhang B; Jia S; Liu W; Peng T
    Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38483719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic integrated scheduling method based on hierarchical planning for heterogeneous AGV fleets in warehouses.
    Hu E; He J; Shen S
    Front Neurorobot; 2022; 16():1053067. PubMed ID: 36699949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Path Planning for Unmanned Surface Vehicles in Inland Rivers Based on Collision Avoidance Regulations.
    Gao P; Xu P; Cheng H; Zhou X; Zhu D
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Obstacle Avoidance Path Planning and Evaluation Method for Intelligent Vehicles Based on the B-Spline Algorithm.
    Zhang Y; Wang P; Cui K; Zhou H; Yang J; Kong X
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on AGV path tracking method based on global vision and reinforcement learning.
    Zhu Q; Zheng Z; Wang C; Lu Y
    Sci Prog; 2023; 106(3):368504231188854. PubMed ID: 37528673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual Electric Dipole Field Applied to Autonomous Formation Flight Control of Unmanned Aerial Vehicles.
    Ambroziak L; Ciężkowski M
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Dynamic Window Approach for Unmanned Surface Vehicles' Local Path Planning Considering the Impact of Environmental Factors.
    Wang Z; Liang Y; Gong C; Zhou Y; Zeng C; Zhu S
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm.
    Long H; Li G; Zhou F; Chen T
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Local Path Planning Techniques of Autonomous Surface Vehicles for Monitoring Applications: The Ypacarai Lake Case-study.
    Peralta F; Arzamendia M; Gregor D; Reina DG; Toral S
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy benchmark for energy-efficient path planning of the automated guided vehicle.
    Hu L; Zhao X; Liu W; Cai W; Xu K; Zhang Z
    Sci Total Environ; 2023 Jan; 857(Pt 3):159613. PubMed ID: 36273562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.