BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37999313)

  • 21. Optimization of N doping in TiO
    Divyasri YV; Lakshmana Reddy N; Lee K; Sakar M; Navakoteswara Rao V; Venkatramu V; Shankar MV; Gangi Reddy NC
    Environ Pollut; 2021 Jan; 269():116170. PubMed ID: 33321309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visible light decomposition of ammonia to N2 with Ru(bpy)3(2+) sensitizer.
    Nemoto J; Harada C; Takei Y; Katakura N; Kaneko M
    Photochem Photobiol Sci; 2007 Jan; 6(1):77-82. PubMed ID: 17200741
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water.
    Camara F; Gavaggio T; Dautreppe B; Chauvin J; Pécaut J; Aldakov D; Collomb MN; Fortage J
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic Systems for CO
    Kumagai H; Tamaki Y; Ishitani O
    Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system.
    Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN
    Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design considerations for a system for photocatalytic hydrogen production from water employing mixed-metal photochemical molecular devices for photoinitiated electron collection.
    Arachchige SM; Brown JR; Chang E; Jain A; Zigler DF; Rangan K; Brewer KJ
    Inorg Chem; 2009 Mar; 48(5):1989-2000. PubMed ID: 19235960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light-induced charge separation and photocatalytic hydrogen evolution from water using Ru(II)Pt(II)-based molecular devices: effects of introducing additional donor and/or acceptor sites.
    Ajayakumar G; Kobayashi M; Masaoka S; Sakai K
    Dalton Trans; 2011 Apr; 40(15):3955-66. PubMed ID: 21416079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dye-Sensitized Fe-MOF nanosheets as Visible-Light driven photocatalyst for high efficient photocatalytic CO
    Mahmoud Idris A; Jiang X; Tan J; Cai Z; Lou X; Wang J; Li Z
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1180-1188. PubMed ID: 34571305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous water oxidation photocatalysis based on periodic mesoporous organosilica immobilizing a tris(2,2'-bipyridine)ruthenium sensitizer.
    Waki M; Shirai S; Yamanaka KI; Maegawa Y; Inagaki S
    RSC Adv; 2020 Apr; 10(24):13960-13967. PubMed ID: 35498487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocatalytic H
    Yamamoto K; Call A; Sakai K
    Chemistry; 2018 Nov; 24(62):16620-16629. PubMed ID: 30152563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen Production from Hydrophobic Ruthenium Dye-Sensitized TiO
    Higashida Y; Takizawa SY; Yoshida M; Kato M; Kobayashi A
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27277-27284. PubMed ID: 37226704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting.
    Oshima T; Nishioka S; Kikuchi Y; Hirai S; Yanagisawa KI; Eguchi M; Miseki Y; Yokoi T; Yui T; Kimoto K; Sayama K; Ishitani O; Mallouk TE; Maeda K
    J Am Chem Soc; 2020 May; 142(18):8412-8420. PubMed ID: 32282192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation.
    González-Moya JR; Garcia-Basabe Y; Rocco ML; Pereira MB; Princival JL; Almeida LC; Araújo CM; David DG; da Silva AF; Machado G
    Nanotechnology; 2016 Jul; 27(28):285401. PubMed ID: 27251109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bisamide Ruthenium Polypyridyl Complex as a Robust and Efficient Photosensitizer for Hydrogen Production.
    Schott O; Pal AK; Chartrand D; Hanan GS
    ChemSusChem; 2017 Nov; 10(22):4436-4441. PubMed ID: 28945951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New supramolecular structural motif coupling a ruthenium(II) polyazine light absorber to a rhodium(I) center.
    Zhou R; Sedai B; Manbeck GF; Brewer KJ
    Inorg Chem; 2013 Dec; 52(23):13314-24. PubMed ID: 24245990
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deposition of platinum on boron-doped TiO
    Sun M; Jiang Y; Tian M; Yan H; Liu R; Yang L
    RSC Adv; 2019 Apr; 9(20):11443-11450. PubMed ID: 35520251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction of Ru(II) diazafluorenone compound with nanocrystalline TiO2 thin film.
    Heuer WB; Xia HL; Abrahamsson M; Zhou Z; Ardo S; Narducci Sarjeant AA; Meyer GJ
    Inorg Chem; 2010 Sep; 49(17):7726-34. PubMed ID: 20701276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Efficient and Selective Visible-light Photocatalytic CO
    Wang L; Zhang H; Zhang Z; Zhang J; He Y; Li Q; Bao J; Fang M; Wu Y
    Chem Asian J; 2023 Aug; 18(15):e202300297. PubMed ID: 37303300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO
    Hong X; Tan J; Zhu H; Feng N; Yang Y; Irvine JTS; Wang L; Liu G; Cheng HM
    Chemistry; 2019 Feb; 25(7):1787-1794. PubMed ID: 30489669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photocatalytic hydrogen evolution using a Ru(ii)-bound heteroaromatic ligand as a reactive site.
    Sawaki T; Ishizuka T; Namura N; Hong D; Miyanishi M; Shiota Y; Kotani H; Yoshizawa K; Jung J; Fukuzumi S; Kojima T
    Dalton Trans; 2020 Dec; 49(47):17230-17242. PubMed ID: 33210674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.