These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37999350)

  • 1. Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy.
    Walsh OD; Choi L; Sigdel KP
    Membranes (Basel); 2023 Oct; 13(11):. PubMed ID: 37999350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15.
    Pistolesi S; Pogni R; Feix JB
    Biophys J; 2007 Sep; 93(5):1651-60. PubMed ID: 17496013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and computational study of melittin, cecropin A, and the hybrid peptide CM15.
    Schlamadinger DE; Wang Y; McCammon JA; Kim JE
    J Phys Chem B; 2012 Sep; 116(35):10600-8. PubMed ID: 22845179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using infrared spectroscopy of cyanylated cysteine to map the membrane binding structure and orientation of the hybrid antimicrobial peptide CM15.
    Alfieri KN; Vienneau AR; Londergan CH
    Biochemistry; 2011 Dec; 50(51):11097-108. PubMed ID: 22103476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Perturbations of Lipid Bilayers Induced by Magainin 2: Insights from AFM Imaging and Force Spectroscopy.
    Gamage YI; Pan J
    Chem Phys Lipids; 2024 Sep; 263():105421. PubMed ID: 39067642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulation of Antimicrobial Peptide CM15 in
    Zaeifi D; Najafi A; Mirnejad R
    Iran J Biotechnol; 2023 Apr; 21(2):e3344. PubMed ID: 37228629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Force Microscopy to Characterize Antimicrobial Peptide-Induced Defects in Model Supported Lipid Bilayers.
    Swana KW; Nagarajan R; Camesano TA
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformations and Dynamic Transitions of a Melittin Derivative That Forms Macromolecule-Sized Pores in Lipid Bilayers.
    Pittman AE; Marsh BP; King GM
    Langmuir; 2018 Jul; 34(28):8393-8399. PubMed ID: 29933696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers.
    Wang Y; Schlamadinger DE; Kim JE; McCammon JA
    Biochim Biophys Acta; 2012 May; 1818(5):1402-9. PubMed ID: 22387432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State.
    Ma L; Luo Y; Ma YH; Lu X
    Langmuir; 2021 Feb; 37(4):1613-1621. PubMed ID: 33464910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the peptide Magainin H2 on Supported Lipid Bilayers studied by different biophysical techniques.
    Marín-Medina N; Mescola A; Alessandrini A
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2635-2643. PubMed ID: 30292399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling.
    Schaefer KG; Pittman AE; Barrera FN; King GM
    Methods; 2022 Jan; 197():20-29. PubMed ID: 33164792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmoprotection of bacterial cells from toxicity caused by antimicrobial hybrid peptide CM15.
    Sato H; Feix JB
    Biochemistry; 2006 Aug; 45(33):9997-10007. PubMed ID: 16906758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of AFM in studying the role of the nanoscale amphipathic nature of (lipo)-peptides interacting with lipid bilayers.
    Mescola A; Ragazzini G; Facci P; Alessandrini A
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35830770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.
    Soblosky L; Ramamoorthy A; Chen Z
    Chem Phys Lipids; 2015 Apr; 187():20-33. PubMed ID: 25707312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane.
    Sharma P; Ayappa KG
    J Membr Biol; 2022 Dec; 255(6):665-675. PubMed ID: 35960325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15.
    Choi H; Yang Z; Weisshaar JC
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):E303-10. PubMed ID: 25561551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.