BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37999354)

  • 1. Prediction of Flux and Rejection Coefficients in the Removal of Emerging Pollutants Using a Nanofiltration Membrane.
    Hidalgo AM; Gómez M; Murcia MD; Gómez E; León G; Alfaro I
    Membranes (Basel); 2023 Nov; 13(11):. PubMed ID: 37999354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions.
    Hidalgo AM; León G; Murcia MD; Gómez M; Gómez E; Gómez JL
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33921335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of Drugs by Commercial Nanofiltration Membranes and Their Modelling.
    Nayak V; Cuhorka J; Mikulášek P
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of landfill leachates by nanofiltration.
    Chaudhari LB; Murthy ZV
    J Environ Manage; 2010 May; 91(5):1209-17. PubMed ID: 20149518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening ultrafiltration membranes to separate lactose and protein from sheep whey: application of simplified model.
    Sánchez-Moya T; Hidalgo AM; Ros-Berruezo G; López-Nicolás R
    J Food Sci Technol; 2020 Sep; 57(9):3193-3200. PubMed ID: 32713959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of lactic acid rejection from lactose in acidified cheese whey by nanofiltration.
    Casado-Coterillo C; Díaz-Guridi P; Otero JA; Ibáñez R
    J Dairy Sci; 2023 Jul; 106(7):4533-4544. PubMed ID: 37225584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model.
    Chaudhari LB; Murthy ZV
    J Hazard Mater; 2010 Aug; 180(1-3):309-15. PubMed ID: 20452729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Different Dye Solutions: A Comparison Study Using a Polyamide NF Membrane.
    Hidalgo AM; León G; Gómez M; Murcia MD; Gómez E; Macario JA
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33321812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-ionic electrolytes and E.coli removal from wastewater using chitosan-based in-situ mediated thin film composite nanofiltration membrane.
    Shafi QI; Ihsan H; Hao Y; Wu X; Ullah N; Younas M; He B; Rezakazemi M
    J Environ Manage; 2021 Sep; 294():112996. PubMed ID: 34126538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass Transport of Dye Solutions through Porous Membrane Containing Tannic Acid/Fe
    Kinfu HH; Rahman MM; Cevallos-Cueva N; Abetz V
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Nanofiltration Process Using DSPM-DE Model for Purification of Amine Solution.
    Ghorbani A; Bayati B; Drioli E; Macedonio F; Kikhavani T; Frappa M
    Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33805230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of Spiegler⁻Kedem and Steric Hindrance Pore Models for Analyzing Nanofiltration Membrane Performance for Smart Water Production.
    Nair RR; Protasova E; Strand S; Bilstad T
    Membranes (Basel); 2018 Sep; 8(3):. PubMed ID: 30200672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of pH on Atenolol/Nanofiltration Membranes Affinity.
    Soares EV; Giacobbo A; Rodrigues MAS; de Pinho MN; Bernardes AM
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of operating parameters on spiramycin removal by nanofiltration membrane.
    Zhao C; Fan W; Wang T; Hou D; Luan Z
    Water Sci Technol; 2013; 68(7):1512-9. PubMed ID: 24135099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.