BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37999513)

  • 1. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication.
    Sonoda GG; Tobaruela EC; Norenburg J; Fabi JP; Andrade SCS
    Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Peptide Toxin Diversity in Ribbon Worms (Nemertea) Using a Transcriptomic Approach.
    Vlasenko AE; Kuznetsov VG; Magarlamov TY
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nemertean toxin genes revealed through transcriptome sequencing.
    Whelan NV; Kocot KM; Santos SR; Halanych KM
    Genome Biol Evol; 2014 Nov; 6(12):3314-25. PubMed ID: 25432940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fast and the Furriest: Investigating the Rate of Selection on Mammalian Toxins.
    Fitzpatrick LLJ; Nijman V; Ligabue-Braun R; Nekaris KA
    Toxins (Basel); 2022 Dec; 14(12):. PubMed ID: 36548740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A limited role for gene duplications in the evolution of platypus venom.
    Wong ES; Papenfuss AT; Whittington CM; Warren WC; Belov K
    Mol Biol Evol; 2012 Jan; 29(1):167-77. PubMed ID: 21816864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution of animal toxin multigene families.
    Kordis D; Gubensek F
    Gene; 2000 Dec; 261(1):43-52. PubMed ID: 11164036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia).
    Gacesa R; Chung R; Dunn SR; Weston AJ; Jaimes-Becerra A; Marques AC; Morandini AC; Hranueli D; Starcevic A; Ward M; Long PF
    BMC Genomics; 2015 Oct; 16():774. PubMed ID: 26464356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders.
    Haney RA; Clarke TH; Gadgil R; Fitzpatrick R; Hayashi CY; Ayoub NA; Garb JE
    Genome Biol Evol; 2016 Jan; 8(1):228-42. PubMed ID: 26733576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionary dynamics of venom toxins made by insects and other animals.
    Walker AA
    Biochem Soc Trans; 2020 Aug; 48(4):1353-1365. PubMed ID: 32756910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid.
    Rodrigo AP; Grosso AR; Baptista PV; Fernandes AR; Costa PM
    Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33525375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae).
    Verdes A; Simpson D; Holford M
    Genome Biol Evol; 2018 Jan; 10(1):249-268. PubMed ID: 29293976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Polychaete's powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs.
    von Reumont BM; Campbell LI; Richter S; Hering L; Sykes D; Hetmank J; Jenner RA; Bleidorn C
    Genome Biol Evol; 2014 Sep; 6(9):2406-23. PubMed ID: 25193302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins.
    Hargreaves AD; Swain MT; Hegarty MJ; Logan DW; Mulley JF
    Genome Biol Evol; 2014 Aug; 6(8):2088-95. PubMed ID: 25079342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Size Dynamics in Marine Ribbon Worms (Nemertea, Spiralia).
    Paule J; von Döhren J; Sagorny C; Nilsson MA
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin.
    von Reumont BM; Blanke A; Richter S; Alvarez F; Bleidorn C; Jenner RA
    Mol Biol Evol; 2014 Jan; 31(1):48-58. PubMed ID: 24132120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collecting and Culturing Lineus sanguineus to Study Nemertea WBR.
    Zattara EE; Fernández-Alvarez FA
    Methods Mol Biol; 2022; 2450():227-243. PubMed ID: 35359311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Toxins of Nemertean Worms.
    Göransson U; Jacobsson E; Strand M; Andersson HS
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30781381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects.
    Drukewitz SH; Bokelmann L; Undheim EAB; von Reumont BM
    Gigascience; 2019 Jul; 8(7):. PubMed ID: 31289835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution, Expression Patterns, and Distribution of Novel Ribbon Worm Predatory and Defensive Toxins.
    Verdes A; Taboada S; Hamilton BR; Undheim EAB; Sonoda GG; Andrade SCS; Morato E; Marina AI; Cárdenas CA; Riesgo A
    Mol Biol Evol; 2022 May; 39(5):. PubMed ID: 35512366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteo-Transcriptomic Analysis Identifies Potential Novel Toxins Secreted by the Predatory, Prey-Piercing Ribbon Worm
    von Reumont BM; Lüddecke T; Timm T; Lochnit G; Vilcinskas A; von Döhren J; Nilsson MA
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32752210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.